Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin^2(x)-1=cos^4(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin2(x)−1=cos4(x)

Solution

x=0.72368…+2πn,x=2π−0.72368…+2πn,x=2.41790…+2πn,x=−2.41790…+2πn
+1
Degrees
x=41.46431…∘+360∘n,x=318.53568…∘+360∘n,x=138.53568…∘+360∘n,x=−138.53568…∘+360∘n
Solution steps
3sin2(x)−1=cos4(x)
Subtract cos4(x) from both sides3sin2(x)−1−cos4(x)=0
Rewrite using trig identities
−1−cos4(x)+3sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1−cos4(x)+3(1−cos2(x))
Simplify −1−cos4(x)+3(1−cos2(x)):−cos4(x)−3cos2(x)+2
−1−cos4(x)+3(1−cos2(x))
Expand 3(1−cos2(x)):3−3cos2(x)
3(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=cos2(x)=3⋅1−3cos2(x)
Multiply the numbers: 3⋅1=3=3−3cos2(x)
=−1−cos4(x)+3−3cos2(x)
Simplify −1−cos4(x)+3−3cos2(x):−cos4(x)−3cos2(x)+2
−1−cos4(x)+3−3cos2(x)
Group like terms=−cos4(x)−3cos2(x)−1+3
Add/Subtract the numbers: −1+3=2=−cos4(x)−3cos2(x)+2
=−cos4(x)−3cos2(x)+2
=−cos4(x)−3cos2(x)+2
2−cos4(x)−3cos2(x)=0
Solve by substitution
2−cos4(x)−3cos2(x)=0
Let: cos(x)=u2−u4−3u2=0
2−u4−3u2=0:u=i23+17​​​,u=−i23+17​​​,u=217​−3​​,u=−217​−3​​
2−u4−3u2=0
Write in the standard form an​xn+…+a1​x+a0​=0−u4−3u2+2=0
Rewrite the equation with v=u2 and v2=u4−v2−3v+2=0
Solve −v2−3v+2=0:v=−23+17​​,v=217​−3​
−v2−3v+2=0
Solve with the quadratic formula
−v2−3v+2=0
Quadratic Equation Formula:
For a=−1,b=−3,c=2v1,2​=2(−1)−(−3)±(−3)2−4(−1)⋅2​​
v1,2​=2(−1)−(−3)±(−3)2−4(−1)⋅2​​
(−3)2−4(−1)⋅2​=17​
(−3)2−4(−1)⋅2​
Apply rule −(−a)=a=(−3)2+4⋅1⋅2​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=32+8​
32=9=9+8​
Add the numbers: 9+8=17=17​
v1,2​=2(−1)−(−3)±17​​
Separate the solutionsv1​=2(−1)−(−3)+17​​,v2​=2(−1)−(−3)−17​​
v=2(−1)−(−3)+17​​:−23+17​​
2(−1)−(−3)+17​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅13+17​​
Multiply the numbers: 2⋅1=2=−23+17​​
Apply the fraction rule: −ba​=−ba​=−23+17​​
v=2(−1)−(−3)−17​​:217​−3​
2(−1)−(−3)−17​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅13−17​​
Multiply the numbers: 2⋅1=2=−23−17​​
Apply the fraction rule: −b−a​=ba​3−17​=−(17​−3)=217​−3​
The solutions to the quadratic equation are:v=−23+17​​,v=217​−3​
v=−23+17​​,v=217​−3​
Substitute back v=u2,solve for u
Solve u2=−23+17​​:u=i23+17​​​,u=−i23+17​​​
u2=−23+17​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−23+17​​​,u=−−23+17​​​
Simplify −23+17​​​:i23+17​​​
−23+17​​​
Apply radical rule: −a​=−1​a​−23+17​​​=−1​23+17​​​=−1​23+17​​​
Apply imaginary number rule: −1​=i=i23+17​​​
Simplify −−23+17​​​:−i23+17​​​
−−23+17​​​
Simplify −23+17​​​:i23+17​​​
−23+17​​​
Apply radical rule: −a​=−1​a​−23+17​​​=−1​23+17​​​=−1​23+17​​​
Apply imaginary number rule: −1​=i=i23+17​​​
=−i23+17​​​
u=i23+17​​​,u=−i23+17​​​
Solve u2=217​−3​:u=217​−3​​,u=−217​−3​​
u2=217​−3​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=217​−3​​,u=−217​−3​​
The solutions are
u=i23+17​​​,u=−i23+17​​​,u=217​−3​​,u=−217​−3​​
Substitute back u=cos(x)cos(x)=i23+17​​​,cos(x)=−i23+17​​​,cos(x)=217​−3​​,cos(x)=−217​−3​​
cos(x)=i23+17​​​,cos(x)=−i23+17​​​,cos(x)=217​−3​​,cos(x)=−217​−3​​
cos(x)=i23+17​​​:No Solution
cos(x)=i23+17​​​
NoSolution
cos(x)=−i23+17​​​:No Solution
cos(x)=−i23+17​​​
NoSolution
cos(x)=217​−3​​:x=arccos​217​−3​​​+2πn,x=2π−arccos​217​−3​​​+2πn
cos(x)=217​−3​​
Apply trig inverse properties
cos(x)=217​−3​​
General solutions for cos(x)=217​−3​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos​217​−3​​​+2πn,x=2π−arccos​217​−3​​​+2πn
x=arccos​217​−3​​​+2πn,x=2π−arccos​217​−3​​​+2πn
cos(x)=−217​−3​​:x=arccos​−217​−3​​​+2πn,x=−arccos​−217​−3​​​+2πn
cos(x)=−217​−3​​
Apply trig inverse properties
cos(x)=−217​−3​​
General solutions for cos(x)=−217​−3​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos​−217​−3​​​+2πn,x=−arccos​−217​−3​​​+2πn
x=arccos​−217​−3​​​+2πn,x=−arccos​−217​−3​​​+2πn
Combine all the solutionsx=arccos​217​−3​​​+2πn,x=2π−arccos​217​−3​​​+2πn,x=arccos​−217​−3​​​+2πn,x=−arccos​−217​−3​​​+2πn
Show solutions in decimal formx=0.72368…+2πn,x=2π−0.72368…+2πn,x=2.41790…+2πn,x=−2.41790…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(3*x)=cos(x)sin^{22}(x)=sin^2(x)sin^2(2x)+cos^2(x)-1=0cos(8t)-5sin(8t)=0cos^2(x)+3sin(x)+1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024