Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(6x)+sin^2(3x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(6x)+sin2(3x)=0

Solution

x=32πn​,x=3π+2πn​
+1
Degrees
x=0∘+120∘n,x=60∘+120∘n
Solution steps
sin2(6x)+sin2(3x)=0
Let: u=3xsin2(2u)+sin2(u)=0
Rewrite using trig identities
sin2(2u)+sin2(u)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=(2sin(u)cos(u))2+sin2(u)
Simplify (2sin(u)cos(u))2+sin2(u):4sin2(u)cos2(u)+sin2(u)
(2sin(u)cos(u))2+sin2(u)
Apply exponent rule: (a⋅b)n=anbn=22sin2(u)cos2(u)+sin2(u)
22=4=4sin2(u)cos2(u)+sin2(u)
=4sin2(u)cos2(u)+sin2(u)
sin2(u)+4cos2(u)sin2(u)=0
Factor sin2(u)+4cos2(u)sin2(u):sin2(u)(4cos2(u)+1)
sin2(u)+4cos2(u)sin2(u)
Factor out common term sin2(u)=sin2(u)(1+4cos2(u))
sin2(u)(4cos2(u)+1)=0
Solving each part separatelysin2(u)=0or4cos2(u)+1=0
sin2(u)=0:u=2πn,u=π+2πn
sin2(u)=0
Apply rule xn=0⇒x=0
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
4cos2(u)+1=0:No Solution
4cos2(u)+1=0
Solve by substitution
4cos2(u)+1=0
Let: cos(u)=u4u2+1=0
4u2+1=0:u=i21​,u=−i21​
4u2+1=0
Move 1to the right side
4u2+1=0
Subtract 1 from both sides4u2+1−1=0−1
Simplify4u2=−1
4u2=−1
Divide both sides by 4
4u2=−1
Divide both sides by 444u2​=4−1​
Simplifyu2=−41​
u2=−41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−41​​,u=−−41​​
Simplify −41​​:i21​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=i21​​
Apply rule 1​=1=i21​
Rewrite i21​ in standard complex form: 21​i
i21​
Multiply fractions: a⋅cb​=ca⋅b​=21i​
Multiply: 1i=i=2i​
=21​i
Simplify −−41​​:−i21​
−−41​​
Simplify −41​​:i21​​
−41​​
Apply radical rule: −a​=−1​a​−41​​=−1​41​​=−1​41​​
Apply imaginary number rule: −1​=i=i41​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=i21​​
=−i21​​
Apply rule 1​=1=−21​i
u=i21​,u=−i21​
Substitute back u=cos(u)cos(u)=i21​,cos(u)=−i21​
cos(u)=i21​,cos(u)=−i21​
cos(u)=i21​:No Solution
cos(u)=i21​
NoSolution
cos(u)=−i21​:No Solution
cos(u)=−i21​
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsu=2πn,u=π+2πn
Substitute back u=3x
3x=2πn:x=32πn​
3x=2πn
Divide both sides by 3
3x=2πn
Divide both sides by 333x​=32πn​
Simplifyx=32πn​
x=32πn​
3x=π+2πn:x=3π+2πn​
3x=π+2πn
Divide both sides by 3
3x=π+2πn
Divide both sides by 333x​=3π​+32πn​
Simplify
33x​=3π​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3π​+32πn​:3π+2πn​
3π​+32πn​
Apply rule ca​±cb​=ca±b​=3π+2πn​
x=3π+2πn​
x=3π+2πn​
x=3π+2πn​
x=32πn​,x=3π+2πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/((2-sin(x)))=sin(x)6sin(x)-3sin^2(x)=3-cos^2(x)1-tan^2(x)=a^2+b^24sin(x)-4sin^3(x)=05tan^4(x)-10tan^2(x)+1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^2(6x)+sin^2(3x)=0 ?

    The general solution for sin^2(6x)+sin^2(3x)=0 is x=(2pin)/3 ,x=(pi+2pin)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024