Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2cos(x)-1)*(2sin(x)+1)=3-4sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(2cos(x)−1)⋅(2sin(x)+1)=3−4sin2(x)

Solution

x=3π​+2πn,x=35π​+2πn,x=4π​+πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n,x=45∘+180∘n
Solution steps
(2cos(x)−1)(2sin(x)+1)=3−4sin2(x)
Subtract 3−4sin2(x) from both sides4sin2(x)+4cos(x)sin(x)+2cos(x)−2sin(x)−4=0
Rewrite using trig identities
−4+2cos(x)−2sin(x)+4sin2(x)+4cos(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−4+2cos(x)−2sin(x)+4(1−cos2(x))+4cos(x)sin(x)
Simplify −4+2cos(x)−2sin(x)+4(1−cos2(x))+4cos(x)sin(x):2cos(x)+4cos(x)sin(x)−4cos2(x)−2sin(x)
−4+2cos(x)−2sin(x)+4(1−cos2(x))+4cos(x)sin(x)
Expand 4(1−cos2(x)):4−4cos2(x)
4(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(x)=4⋅1−4cos2(x)
Multiply the numbers: 4⋅1=4=4−4cos2(x)
=−4+2cos(x)−2sin(x)+4−4cos2(x)+4cos(x)sin(x)
Simplify −4+2cos(x)−2sin(x)+4−4cos2(x)+4cos(x)sin(x):2cos(x)+4cos(x)sin(x)−4cos2(x)−2sin(x)
−4+2cos(x)−2sin(x)+4−4cos2(x)+4cos(x)sin(x)
Group like terms=2cos(x)−2sin(x)−4cos2(x)+4cos(x)sin(x)−4+4
−4+4=0=2cos(x)+4cos(x)sin(x)−4cos2(x)−2sin(x)
=2cos(x)+4cos(x)sin(x)−4cos2(x)−2sin(x)
=2cos(x)+4cos(x)sin(x)−4cos2(x)−2sin(x)
2cos(x)−2sin(x)−4cos2(x)+4cos(x)sin(x)=0
Factor 2cos(x)−2sin(x)−4cos2(x)+4cos(x)sin(x):−2(2cos(x)−1)(cos(x)−sin(x))
2cos(x)−2sin(x)−4cos2(x)+4cos(x)sin(x)
Rewrite 4 as 2⋅2Rewrite −4 as 2⋅2=2cos(x)−2sin(x)−2⋅2cos2(x)+2⋅2sin(x)cos(x)
Factor out common term 2=2(cos(x)−sin(x)−2cos2(x)+2sin(x)cos(x))
Factor cos(x)−sin(x)−2cos2(x)+2sin(x)cos(x):(1−2cos(x))(cos(x)−sin(x))
cos(x)−sin(x)−2cos2(x)+2sin(x)cos(x)
Factor cos(x)−2cos2(x):cos(x)(1−2cos(x))
cos(x)−2cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=cos(x)−2cos(x)cos(x)
Factor out common term cos(x)=cos(x)(1−2cos(x))
Factor −sin(x)+2sin(x)cos(x):sin(x)(−1+2cos(x))
−sin(x)+2sin(x)cos(x)
Factor out common term sin(x)=sin(x)(−1+2cos(x))
=cos(x)(1−2cos(x))+sin(x)(−1+2cos(x))
Rewrite as=(1−2cos(x))cos(x)−(1−2cos(x))sin(x)
Factor out common term (1−2cos(x))=(1−2cos(x))(cos(x)−sin(x))
=2(−2cos(x)+1)(cos(x)−sin(x))
Factor 1−2cos(x):−(2cos(x)−1)
1−2cos(x)
Factor out common term −1=−(2cos(x)−1)
=−2(2cos(x)−1)(cos(x)−sin(x))
−2(2cos(x)−1)(cos(x)−sin(x))=0
Solving each part separately2cos(x)−1=0orcos(x)−sin(x)=0
2cos(x)−1=0:x=3π​+2πn,x=35π​+2πn
2cos(x)−1=0
Move 1to the right side
2cos(x)−1=0
Add 1 to both sides2cos(x)−1+1=0+1
Simplify2cos(x)=1
2cos(x)=1
Divide both sides by 2
2cos(x)=1
Divide both sides by 222cos(x)​=21​
Simplifycos(x)=21​
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
cos(x)−sin(x)=0:x=4π​+πn
cos(x)−sin(x)=0
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn,x=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

r=(2a)/((1+cos(x)))cos^3(x)+cos^2(x)+cos(x)+1=0(cos^4(x))/3 =sin^2(x)sin^3(x)cos(x)-sin^2(x)=0sin^2(x)+sin^4(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024