Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos^4(x))/3 =sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos4(x)​=sin2(x)

Solution

x=−0.47445…+2πn,x=π+0.47445…+2πn,x=0.47445…+2πn,x=π−0.47445…+2πn
+1
Degrees
x=−27.18404…∘+360∘n,x=207.18404…∘+360∘n,x=27.18404…∘+360∘n,x=152.81595…∘+360∘n
Solution steps
3cos4(x)​=sin2(x)
Subtract sin2(x) from both sides3cos4(x)​−sin2(x)=0
Simplify 3cos4(x)​−sin2(x):3cos4(x)−3sin2(x)​
3cos4(x)​−sin2(x)
Convert element to fraction: sin2(x)=3sin2(x)3​=3cos4(x)​−3sin2(x)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3cos4(x)−sin2(x)⋅3​
3cos4(x)−3sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0cos4(x)−3sin2(x)=0
Factor cos4(x)−3sin2(x):(cos2(x)+3​sin(x))(cos2(x)−3​sin(x))
cos4(x)−3sin2(x)
Rewrite cos4(x)−3sin2(x) as (cos2(x))2−(3​sin(x))2
cos4(x)−3sin2(x)
Apply radical rule: a=(a​)23=(3​)2=cos4(x)−(3​)2sin2(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(cos2(x))2−(3​)2sin2(x)
Apply exponent rule: ambm=(ab)m(3​)2sin2(x)=(3​sin(x))2=(cos2(x))2−(3​sin(x))2
=(cos2(x))2−(3​sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(cos2(x))2−(3​sin(x))2=(cos2(x)+3​sin(x))(cos2(x)−3​sin(x))=(cos2(x)+3​sin(x))(cos2(x)−3​sin(x))
(cos2(x)+3​sin(x))(cos2(x)−3​sin(x))=0
Solving each part separatelycos2(x)+3​sin(x)=0orcos2(x)−3​sin(x)=0
cos2(x)+3​sin(x)=0:x=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn
cos2(x)+3​sin(x)=0
Rewrite using trig identities
cos2(x)+sin(x)3​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)+sin(x)3​
1−sin2(x)+sin(x)3​=0
Solve by substitution
1−sin2(x)+sin(x)3​=0
Let: sin(x)=u1−u2+u3​=0
1−u2+u3​=0:u=−2−3​+7​​,u=23​+7​​
1−u2+u3​=0
Write in the standard form ax2+bx+c=0−u2+3​u+1=0
Solve with the quadratic formula
−u2+3​u+1=0
Quadratic Equation Formula:
For a=−1,b=3​,c=1u1,2​=2(−1)−3​±(3​)2−4(−1)⋅1​​
u1,2​=2(−1)−3​±(3​)2−4(−1)⋅1​​
(3​)2−4(−1)⋅1​=7​
(3​)2−4(−1)⋅1​
Apply rule −(−a)=a=(3​)2+4⋅1⋅1​
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=3+4​
Add the numbers: 3+4=7=7​
u1,2​=2(−1)−3​±7​​
Separate the solutionsu1​=2(−1)−3​+7​​,u2​=2(−1)−3​−7​​
u=2(−1)−3​+7​​:−2−3​+7​​
2(−1)−3​+7​​
Remove parentheses: (−a)=−a=−2⋅1−3​+7​​
Multiply the numbers: 2⋅1=2=−2−3​+7​​
Apply the fraction rule: −ba​=−ba​=−2−3​+7​​
u=2(−1)−3​−7​​:23​+7​​
2(−1)−3​−7​​
Remove parentheses: (−a)=−a=−2⋅1−3​−7​​
Multiply the numbers: 2⋅1=2=−2−3​−7​​
Apply the fraction rule: −b−a​=ba​−3​−7​=−(3​+7​)=23​+7​​
The solutions to the quadratic equation are:u=−2−3​+7​​,u=23​+7​​
Substitute back u=sin(x)sin(x)=−2−3​+7​​,sin(x)=23​+7​​
sin(x)=−2−3​+7​​,sin(x)=23​+7​​
sin(x)=−2−3​+7​​:x=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn
sin(x)=−2−3​+7​​
Apply trig inverse properties
sin(x)=−2−3​+7​​
General solutions for sin(x)=−2−3​+7​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn
x=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn
sin(x)=23​+7​​:No Solution
sin(x)=23​+7​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn
cos2(x)−3​sin(x)=0:x=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
cos2(x)−3​sin(x)=0
Rewrite using trig identities
cos2(x)−sin(x)3​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)−sin(x)3​
1−sin2(x)−sin(x)3​=0
Solve by substitution
1−sin2(x)−sin(x)3​=0
Let: sin(x)=u1−u2−u3​=0
1−u2−u3​=0:u=−23​+7​​,u=27​−3​​
1−u2−u3​=0
Write in the standard form ax2+bx+c=0−u2−3​u+1=0
Solve with the quadratic formula
−u2−3​u+1=0
Quadratic Equation Formula:
For a=−1,b=−3​,c=1u1,2​=2(−1)−(−3​)±(−3​)2−4(−1)⋅1​​
u1,2​=2(−1)−(−3​)±(−3​)2−4(−1)⋅1​​
(−3​)2−4(−1)⋅1​=7​
(−3​)2−4(−1)⋅1​
Apply rule −(−a)=a=(−3​)2+4⋅1⋅1​
(−3​)2=3
(−3​)2
Apply exponent rule: (−a)n=an,if n is even(−3​)2=(3​)2=(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=3+4​
Add the numbers: 3+4=7=7​
u1,2​=2(−1)−(−3​)±7​​
Separate the solutionsu1​=2(−1)−(−3​)+7​​,u2​=2(−1)−(−3​)−7​​
u=2(−1)−(−3​)+7​​:−23​+7​​
2(−1)−(−3​)+7​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅13​+7​​
Multiply the numbers: 2⋅1=2=−23​+7​​
Apply the fraction rule: −ba​=−ba​=−23​+7​​
u=2(−1)−(−3​)−7​​:27​−3​​
2(−1)−(−3​)−7​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅13​−7​​
Multiply the numbers: 2⋅1=2=−23​−7​​
Apply the fraction rule: −b−a​=ba​3​−7​=−(7​−3​)=27​−3​​
The solutions to the quadratic equation are:u=−23​+7​​,u=27​−3​​
Substitute back u=sin(x)sin(x)=−23​+7​​,sin(x)=27​−3​​
sin(x)=−23​+7​​,sin(x)=27​−3​​
sin(x)=−23​+7​​:No Solution
sin(x)=−23​+7​​
−1≤sin(x)≤1NoSolution
sin(x)=27​−3​​:x=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
sin(x)=27​−3​​
Apply trig inverse properties
sin(x)=27​−3​​
General solutions for sin(x)=27​−3​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
x=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
Combine all the solutionsx=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
Combine all the solutionsx=arcsin(−2−3​+7​​)+2πn,x=π+arcsin(2−3​+7​​)+2πn,x=arcsin(27​−3​​)+2πn,x=π−arcsin(27​−3​​)+2πn
Show solutions in decimal formx=−0.47445…+2πn,x=π+0.47445…+2πn,x=0.47445…+2πn,x=π−0.47445…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^3(x)cos(x)-sin^2(x)=0sin^2(x)+sin^4(x)=0cos^2(45-a)-sin^2(45-a)=sin^2(a)sin^2(2x)-cos^2(2x)=0cos^2(x)cos(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024