Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(45-a)-sin^2(45-a)=sin^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(45∘−a)−sin2(45∘−a)=sin2(a)

Solution

a=360∘n,a=180∘+360∘n,a=1.10714…+180∘n
+1
Radians
a=0+2πn,a=π+2πn,a=1.10714…+πn
Solution steps
cos2(45∘−a)−sin2(45∘−a)=sin2(a)
Rewrite using trig identities
cos2(45∘−a)−sin2(45∘−a)=sin2(a)
Rewrite using trig identities
sin(45∘−a)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(45∘)cos(a)−cos(45∘)sin(a)
Simplify sin(45∘)cos(a)−cos(45∘)sin(a):22​cos(a)−2​sin(a)​
sin(45∘)cos(a)−cos(45∘)sin(a)
sin(45∘)cos(a)=22​cos(a)​
sin(45∘)cos(a)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(a)​
cos(45∘)sin(a)=22​sin(a)​
cos(45∘)sin(a)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(a)​
=22​cos(a)​−22​sin(a)​
Apply rule ca​±cb​=ca±b​=22​cos(a)−2​sin(a)​
=22​cos(a)−2​sin(a)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(a)+sin(45∘)sin(a)
Simplify cos(45∘)cos(a)+sin(45∘)sin(a):22​cos(a)+2​sin(a)​
cos(45∘)cos(a)+sin(45∘)sin(a)
cos(45∘)cos(a)=22​cos(a)​
cos(45∘)cos(a)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(a)​
sin(45∘)sin(a)=22​sin(a)​
sin(45∘)sin(a)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(a)​
=22​cos(a)​+22​sin(a)​
Apply rule ca​±cb​=ca±b​=22​cos(a)+2​sin(a)​
=22​cos(a)+2​sin(a)​
(22​cos(a)+2​sin(a)​)2−(22​cos(a)−2​sin(a)​)2=sin2(a)
Simplify (22​cos(a)+2​sin(a)​)2−(22​cos(a)−2​sin(a)​)2:2cos(a)sin(a)
(22​cos(a)+2​sin(a)​)2−(22​cos(a)−2​sin(a)​)2
(22​cos(a)+2​sin(a)​)2=2(cos(a)+sin(a))2​
(22​cos(a)+2​sin(a)​)2
22​cos(a)+2​sin(a)​=2​cos(a)+sin(a)​
22​cos(a)+2​sin(a)​
Factor out common term 2​=22​(cos(a)+sin(a))​
Cancel 22​(cos(a)+sin(a))​:2​cos(a)+sin(a)​
22​(cos(a)+sin(a))​
Apply radical rule: na​=an1​2​=221​=2221​(cos(a)+sin(a))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​cos(a)+sin(a)​
Subtract the numbers: 1−21​=21​=221​cos(a)+sin(a)​
Apply radical rule: an1​=na​221​=2​=2​cos(a)+sin(a)​
=2​cos(a)+sin(a)​
=(2​cos(a)+sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=(2​)2(cos(a)+sin(a))2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(cos(a)+sin(a))2​
(22​cos(a)−2​sin(a)​)2=2(cos(a)−sin(a))2​
(22​cos(a)−2​sin(a)​)2
22​cos(a)−2​sin(a)​=2​cos(a)−sin(a)​
22​cos(a)−2​sin(a)​
Factor out common term 2​=22​(cos(a)−sin(a))​
Cancel 22​(cos(a)−sin(a))​:2​cos(a)−sin(a)​
22​(cos(a)−sin(a))​
Apply radical rule: na​=an1​2​=221​=2221​(cos(a)−sin(a))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​cos(a)−sin(a)​
Subtract the numbers: 1−21​=21​=221​cos(a)−sin(a)​
Apply radical rule: an1​=na​221​=2​=2​cos(a)−sin(a)​
=2​cos(a)−sin(a)​
=(2​cos(a)−sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=(2​)2(cos(a)−sin(a))2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(cos(a)−sin(a))2​
=2(cos(a)+sin(a))2​−2(cos(a)−sin(a))2​
Apply rule ca​±cb​=ca±b​=2(cos(a)+sin(a))2−(cos(a)−sin(a))2​
Expand (cos(a)+sin(a))2−(cos(a)−sin(a))2:4cos(a)sin(a)
(cos(a)+sin(a))2−(cos(a)−sin(a))2
(cos(a)+sin(a))2:cos2(a)+2cos(a)sin(a)+sin2(a)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=cos(a),b=sin(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−(cos(a)−sin(a))2
(cos(a)−sin(a))2:cos2(a)−2cos(a)sin(a)+sin2(a)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=cos(a),b=sin(a)
=cos2(a)−2cos(a)sin(a)+sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−(cos2(a)−2cos(a)sin(a)+sin2(a))
−(cos2(a)−2cos(a)sin(a)+sin2(a)):−cos2(a)+2cos(a)sin(a)−sin2(a)
−(cos2(a)−2cos(a)sin(a)+sin2(a))
Distribute parentheses=−(cos2(a))−(−2cos(a)sin(a))−(sin2(a))
Apply minus-plus rules−(−a)=a,−(a)=−a=−cos2(a)+2cos(a)sin(a)−sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a)
Simplify cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a):4cos(a)sin(a)
cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a)
Add similar elements: 2cos(a)sin(a)+2cos(a)sin(a)=4cos(a)sin(a)=cos2(a)+4cos(a)sin(a)+sin2(a)−cos2(a)−sin2(a)
Add similar elements: cos2(a)−cos2(a)=0=4cos(a)sin(a)+sin2(a)−sin2(a)
Add similar elements: sin2(a)−sin2(a)=0=4cos(a)sin(a)
=4cos(a)sin(a)
=24cos(a)sin(a)​
Divide the numbers: 24​=2=2cos(a)sin(a)
2cos(a)sin(a)=sin2(a)
2cos(a)sin(a)=sin2(a)
Subtract sin2(a) from both sides2cos(a)sin(a)−sin2(a)=0
Factor 2cos(a)sin(a)−sin2(a):sin(a)(2cos(a)−sin(a))
2cos(a)sin(a)−sin2(a)
Apply exponent rule: ab+c=abacsin2(a)=sin(a)sin(a)=2sin(a)cos(a)−sin(a)sin(a)
Factor out common term sin(a)=sin(a)(2cos(a)−sin(a))
sin(a)(2cos(a)−sin(a))=0
Solving each part separatelysin(a)=0or2cos(a)−sin(a)=0
sin(a)=0:a=360∘n,a=180∘+360∘n
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+360∘n,a=180∘+360∘n
a=0+360∘n,a=180∘+360∘n
Solve a=0+360∘n:a=360∘n
a=0+360∘n
0+360∘n=360∘na=360∘n
a=360∘n,a=180∘+360∘n
2cos(a)−sin(a)=0:a=arctan(2)+180∘n
2cos(a)−sin(a)=0
Rewrite using trig identities
2cos(a)−sin(a)=0
Divide both sides by cos(a),cos(a)=0cos(a)2cos(a)−sin(a)​=cos(a)0​
Simplify2−cos(a)sin(a)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)2−tan(a)=0
2−tan(a)=0
Move 2to the right side
2−tan(a)=0
Subtract 2 from both sides2−tan(a)−2=0−2
Simplify−tan(a)=−2
−tan(a)=−2
Divide both sides by −1
−tan(a)=−2
Divide both sides by −1−1−tan(a)​=−1−2​
Simplifytan(a)=2
tan(a)=2
Apply trig inverse properties
tan(a)=2
General solutions for tan(a)=2tan(x)=a⇒x=arctan(a)+180∘na=arctan(2)+180∘n
a=arctan(2)+180∘n
Combine all the solutionsa=360∘n,a=180∘+360∘n,a=arctan(2)+180∘n
Show solutions in decimal forma=360∘n,a=180∘+360∘n,a=1.10714…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(2x)-cos^2(2x)=0cos^2(x)cos(x)=02cos(x)=-38sec(x)-3tan^2(x)=7sin^2(6x)+sin^2(3x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^2(45-a)-sin^2(45-a)=sin^2(a) ?

    The general solution for cos^2(45-a)-sin^2(45-a)=sin^2(a) is a=360n,a=180+360n,a=1.10714…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024