Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)cos^2(x)=((1-cos^4(x)))/8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)cos2(x)=8(1−cos4(x))​

Solution

x=1.18319…+2πn,x=2π−1.18319…+2πn,x=1.95839…+2πn,x=−1.95839…+2πn,x=2πn,x=π+2πn
+1
Degrees
x=67.79234…∘+360∘n,x=292.20765…∘+360∘n,x=112.20765…∘+360∘n,x=−112.20765…∘+360∘n,x=0∘+360∘n,x=180∘+360∘n
Solution steps
sin2(x)cos2(x)=8(1−cos4(x))​
Subtract 81−cos4(x)​ from both sidessin2(x)cos2(x)−81−cos4(x)​=0
Simplify sin2(x)cos2(x)−81−cos4(x)​:88sin2(x)cos2(x)−1+cos4(x)​
sin2(x)cos2(x)−81−cos4(x)​
Convert element to fraction: sin2(x)cos2(x)=8sin2(x)cos2(x)8​=8sin2(x)cos2(x)⋅8​−81−cos4(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=8sin2(x)cos2(x)⋅8−(1−cos4(x))​
Expand sin2(x)cos2(x)⋅8−(1−cos4(x)):sin2(x)cos2(x)⋅8−1+cos4(x)
sin2(x)cos2(x)⋅8−(1−cos4(x))
=8sin2(x)cos2(x)−(1−cos4(x))
−(1−cos4(x)):−1+cos4(x)
−(1−cos4(x))
Distribute parentheses=−(1)−(−cos4(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos4(x)
=sin2(x)cos2(x)⋅8−1+cos4(x)
=88sin2(x)cos2(x)−1+cos4(x)​
88sin2(x)cos2(x)−1+cos4(x)​=0
g(x)f(x)​=0⇒f(x)=08sin2(x)cos2(x)−1+cos4(x)=0
Rewrite using trig identities
−1+cos4(x)+8cos2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+cos4(x)+8cos2(x)(1−cos2(x))
Simplify −1+cos4(x)+8cos2(x)(1−cos2(x)):−7cos4(x)+8cos2(x)−1
−1+cos4(x)+8cos2(x)(1−cos2(x))
Expand 8cos2(x)(1−cos2(x)):8cos2(x)−8cos4(x)
8cos2(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=8cos2(x),b=1,c=cos2(x)=8cos2(x)⋅1−8cos2(x)cos2(x)
=8⋅1⋅cos2(x)−8cos2(x)cos2(x)
Simplify 8⋅1⋅cos2(x)−8cos2(x)cos2(x):8cos2(x)−8cos4(x)
8⋅1⋅cos2(x)−8cos2(x)cos2(x)
8⋅1⋅cos2(x)=8cos2(x)
8⋅1⋅cos2(x)
Multiply the numbers: 8⋅1=8=8cos2(x)
8cos2(x)cos2(x)=8cos4(x)
8cos2(x)cos2(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos2(x)=cos2+2(x)=8cos2+2(x)
Add the numbers: 2+2=4=8cos4(x)
=8cos2(x)−8cos4(x)
=8cos2(x)−8cos4(x)
=−1+cos4(x)+8cos2(x)−8cos4(x)
Simplify −1+cos4(x)+8cos2(x)−8cos4(x):−7cos4(x)+8cos2(x)−1
−1+cos4(x)+8cos2(x)−8cos4(x)
Group like terms=cos4(x)+8cos2(x)−8cos4(x)−1
Add similar elements: cos4(x)−8cos4(x)=−7cos4(x)=−7cos4(x)+8cos2(x)−1
=−7cos4(x)+8cos2(x)−1
=−7cos4(x)+8cos2(x)−1
−1−7cos4(x)+8cos2(x)=0
Solve by substitution
−1−7cos4(x)+8cos2(x)=0
Let: cos(x)=u−1−7u4+8u2=0
−1−7u4+8u2=0:u=71​​,u=−71​​,u=1,u=−1
−1−7u4+8u2=0
Write in the standard form an​xn+…+a1​x+a0​=0−7u4+8u2−1=0
Rewrite the equation with v=u2 and v2=u4−7v2+8v−1=0
Solve −7v2+8v−1=0:v=71​,v=1
−7v2+8v−1=0
Solve with the quadratic formula
−7v2+8v−1=0
Quadratic Equation Formula:
For a=−7,b=8,c=−1v1,2​=2(−7)−8±82−4(−7)(−1)​​
v1,2​=2(−7)−8±82−4(−7)(−1)​​
82−4(−7)(−1)​=6
82−4(−7)(−1)​
Apply rule −(−a)=a=82−4⋅7⋅1​
Multiply the numbers: 4⋅7⋅1=28=82−28​
82=64=64−28​
Subtract the numbers: 64−28=36=36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
v1,2​=2(−7)−8±6​
Separate the solutionsv1​=2(−7)−8+6​,v2​=2(−7)−8−6​
v=2(−7)−8+6​:71​
2(−7)−8+6​
Remove parentheses: (−a)=−a=−2⋅7−8+6​
Add/Subtract the numbers: −8+6=−2=−2⋅7−2​
Multiply the numbers: 2⋅7=14=−14−2​
Apply the fraction rule: −b−a​=ba​=142​
Cancel the common factor: 2=71​
v=2(−7)−8−6​:1
2(−7)−8−6​
Remove parentheses: (−a)=−a=−2⋅7−8−6​
Subtract the numbers: −8−6=−14=−2⋅7−14​
Multiply the numbers: 2⋅7=14=−14−14​
Apply the fraction rule: −b−a​=ba​=1414​
Apply rule aa​=1=1
The solutions to the quadratic equation are:v=71​,v=1
v=71​,v=1
Substitute back v=u2,solve for u
Solve u2=71​:u=71​​,u=−71​​
u2=71​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=71​​,u=−71​​
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
The solutions are
u=71​​,u=−71​​,u=1,u=−1
Substitute back u=cos(x)cos(x)=71​​,cos(x)=−71​​,cos(x)=1,cos(x)=−1
cos(x)=71​​,cos(x)=−71​​,cos(x)=1,cos(x)=−1
cos(x)=71​​:x=arccos(71​​)+2πn,x=2π−arccos(71​​)+2πn
cos(x)=71​​
Apply trig inverse properties
cos(x)=71​​
General solutions for cos(x)=71​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(71​​)+2πn,x=2π−arccos(71​​)+2πn
x=arccos(71​​)+2πn,x=2π−arccos(71​​)+2πn
cos(x)=−71​​:x=arccos(−71​​)+2πn,x=−arccos(−71​​)+2πn
cos(x)=−71​​
Apply trig inverse properties
cos(x)=−71​​
General solutions for cos(x)=−71​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−71​​)+2πn,x=−arccos(−71​​)+2πn
x=arccos(−71​​)+2πn,x=−arccos(−71​​)+2πn
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=arccos(71​​)+2πn,x=2π−arccos(71​​)+2πn,x=arccos(−71​​)+2πn,x=−arccos(−71​​)+2πn,x=2πn,x=π+2πn
Show solutions in decimal formx=1.18319…+2πn,x=2π−1.18319…+2πn,x=1.95839…+2πn,x=−1.95839…+2πn,x=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^3(x)+sin(x)=2sin^{22}(x)(1+tan^2(x))/(1+sec(x))=sec(x)-sin^2(x)+2cos(x)-2=0sin(5x-1)= 4/5sin^2(x)= 1/36
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024