Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^3(x)+sin(x)=2sin^{22}(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin3(x)+sin(x)=2sin22(x)

Solution

x=2πn,x=π+2πn,x=2π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=90∘+360∘n
Solution steps
sin3(x)+sin(x)=2sin22(x)
Solve by substitution
sin3(x)+sin(x)=2sin22(x)
Let: sin(x)=uu3+u=2u22
u3+u=2u22:u=0,u=1
u3+u=2u22
Switch sides2u22=u3+u
Move uto the left side
2u22=u3+u
Subtract u from both sides2u22−u=u3+u−u
Simplify2u22−u=u3
2u22−u=u3
Move u3to the left side
2u22−u=u3
Subtract u3 from both sides2u22−u−u3=u3−u3
Simplify2u22−u−u3=0
2u22−u−u3=0
Factor 2u22−u−u3:u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
2u22−u−u3
Factor out common term u:u(2u21−u2−1)
2u22−u3−u
Apply exponent rule: ab+c=abacu3=u2u=2u21u−u2u−u
Factor out common term u=u(2u21−u2−1)
=u(2u21−u2−1)
Factor 2u21−u2−1:(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
2u21−u2−1
Use the rational root theorem
a0​=1,an​=2
The dividers of a0​:1,The dividers of an​:1,2
Therefore, check the following rational numbers:±1,21​
11​ is a root of the expression, so factor out u−1
=(u−1)u−12u21−u2−1​
u−12u21−u2−1​=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
u−12u21−u2−1​
Divide u−12u21−u2−1​:u−12u21−u2−1​=2u20+u−12u20−u2−1​
Divide the leading coefficients of the numerator 2u21−u2−1
and the divisor u−1:u2u21​=2u20
Quotient=2u20
Multiply u−1 by 2u20:2u21−2u20Subtract 2u21−2u20 from 2u21−u2−1 to get new remainderRemainder=2u20−u2−1
Thereforeu−12u21−u2−1​=2u20+u−12u20−u2−1​
=2u20+u−12u20−u2−1​
Divide u−12u20−u2−1​:u−12u20−u2−1​=2u19+u−12u19−u2−1​
Divide the leading coefficients of the numerator 2u20−u2−1
and the divisor u−1:u2u20​=2u19
Quotient=2u19
Multiply u−1 by 2u19:2u20−2u19Subtract 2u20−2u19 from 2u20−u2−1 to get new remainderRemainder=2u19−u2−1
Thereforeu−12u20−u2−1​=2u19+u−12u19−u2−1​
=2u20+2u19+u−12u19−u2−1​
Divide u−12u19−u2−1​:u−12u19−u2−1​=2u18+u−12u18−u2−1​
Divide the leading coefficients of the numerator 2u19−u2−1
and the divisor u−1:u2u19​=2u18
Quotient=2u18
Multiply u−1 by 2u18:2u19−2u18Subtract 2u19−2u18 from 2u19−u2−1 to get new remainderRemainder=2u18−u2−1
Thereforeu−12u19−u2−1​=2u18+u−12u18−u2−1​
=2u20+2u19+2u18+u−12u18−u2−1​
Divide u−12u18−u2−1​:u−12u18−u2−1​=2u17+u−12u17−u2−1​
Divide the leading coefficients of the numerator 2u18−u2−1
and the divisor u−1:u2u18​=2u17
Quotient=2u17
Multiply u−1 by 2u17:2u18−2u17Subtract 2u18−2u17 from 2u18−u2−1 to get new remainderRemainder=2u17−u2−1
Thereforeu−12u18−u2−1​=2u17+u−12u17−u2−1​
=2u20+2u19+2u18+2u17+u−12u17−u2−1​
Divide u−12u17−u2−1​:u−12u17−u2−1​=2u16+u−12u16−u2−1​
Divide the leading coefficients of the numerator 2u17−u2−1
and the divisor u−1:u2u17​=2u16
Quotient=2u16
Multiply u−1 by 2u16:2u17−2u16Subtract 2u17−2u16 from 2u17−u2−1 to get new remainderRemainder=2u16−u2−1
Thereforeu−12u17−u2−1​=2u16+u−12u16−u2−1​
=2u20+2u19+2u18+2u17+2u16+u−12u16−u2−1​
Divide u−12u16−u2−1​:u−12u16−u2−1​=2u15+u−12u15−u2−1​
Divide the leading coefficients of the numerator 2u16−u2−1
and the divisor u−1:u2u16​=2u15
Quotient=2u15
Multiply u−1 by 2u15:2u16−2u15Subtract 2u16−2u15 from 2u16−u2−1 to get new remainderRemainder=2u15−u2−1
Thereforeu−12u16−u2−1​=2u15+u−12u15−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+u−12u15−u2−1​
Divide u−12u15−u2−1​:u−12u15−u2−1​=2u14+u−12u14−u2−1​
Divide the leading coefficients of the numerator 2u15−u2−1
and the divisor u−1:u2u15​=2u14
Quotient=2u14
Multiply u−1 by 2u14:2u15−2u14Subtract 2u15−2u14 from 2u15−u2−1 to get new remainderRemainder=2u14−u2−1
Thereforeu−12u15−u2−1​=2u14+u−12u14−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+u−12u14−u2−1​
Divide u−12u14−u2−1​:u−12u14−u2−1​=2u13+u−12u13−u2−1​
Divide the leading coefficients of the numerator 2u14−u2−1
and the divisor u−1:u2u14​=2u13
Quotient=2u13
Multiply u−1 by 2u13:2u14−2u13Subtract 2u14−2u13 from 2u14−u2−1 to get new remainderRemainder=2u13−u2−1
Thereforeu−12u14−u2−1​=2u13+u−12u13−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+u−12u13−u2−1​
Divide u−12u13−u2−1​:u−12u13−u2−1​=2u12+u−12u12−u2−1​
Divide the leading coefficients of the numerator 2u13−u2−1
and the divisor u−1:u2u13​=2u12
Quotient=2u12
Multiply u−1 by 2u12:2u13−2u12Subtract 2u13−2u12 from 2u13−u2−1 to get new remainderRemainder=2u12−u2−1
Thereforeu−12u13−u2−1​=2u12+u−12u12−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+u−12u12−u2−1​
Divide u−12u12−u2−1​:u−12u12−u2−1​=2u11+u−12u11−u2−1​
Divide the leading coefficients of the numerator 2u12−u2−1
and the divisor u−1:u2u12​=2u11
Quotient=2u11
Multiply u−1 by 2u11:2u12−2u11Subtract 2u12−2u11 from 2u12−u2−1 to get new remainderRemainder=2u11−u2−1
Thereforeu−12u12−u2−1​=2u11+u−12u11−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+u−12u11−u2−1​
Divide u−12u11−u2−1​:u−12u11−u2−1​=2u10+u−12u10−u2−1​
Divide the leading coefficients of the numerator 2u11−u2−1
and the divisor u−1:u2u11​=2u10
Quotient=2u10
Multiply u−1 by 2u10:2u11−2u10Subtract 2u11−2u10 from 2u11−u2−1 to get new remainderRemainder=2u10−u2−1
Thereforeu−12u11−u2−1​=2u10+u−12u10−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+u−12u10−u2−1​
Divide u−12u10−u2−1​:u−12u10−u2−1​=2u9+u−12u9−u2−1​
Divide the leading coefficients of the numerator 2u10−u2−1
and the divisor u−1:u2u10​=2u9
Quotient=2u9
Multiply u−1 by 2u9:2u10−2u9Subtract 2u10−2u9 from 2u10−u2−1 to get new remainderRemainder=2u9−u2−1
Thereforeu−12u10−u2−1​=2u9+u−12u9−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+u−12u9−u2−1​
Divide u−12u9−u2−1​:u−12u9−u2−1​=2u8+u−12u8−u2−1​
Divide the leading coefficients of the numerator 2u9−u2−1
and the divisor u−1:u2u9​=2u8
Quotient=2u8
Multiply u−1 by 2u8:2u9−2u8Subtract 2u9−2u8 from 2u9−u2−1 to get new remainderRemainder=2u8−u2−1
Thereforeu−12u9−u2−1​=2u8+u−12u8−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+u−12u8−u2−1​
Divide u−12u8−u2−1​:u−12u8−u2−1​=2u7+u−12u7−u2−1​
Divide the leading coefficients of the numerator 2u8−u2−1
and the divisor u−1:u2u8​=2u7
Quotient=2u7
Multiply u−1 by 2u7:2u8−2u7Subtract 2u8−2u7 from 2u8−u2−1 to get new remainderRemainder=2u7−u2−1
Thereforeu−12u8−u2−1​=2u7+u−12u7−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+u−12u7−u2−1​
Divide u−12u7−u2−1​:u−12u7−u2−1​=2u6+u−12u6−u2−1​
Divide the leading coefficients of the numerator 2u7−u2−1
and the divisor u−1:u2u7​=2u6
Quotient=2u6
Multiply u−1 by 2u6:2u7−2u6Subtract 2u7−2u6 from 2u7−u2−1 to get new remainderRemainder=2u6−u2−1
Thereforeu−12u7−u2−1​=2u6+u−12u6−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+u−12u6−u2−1​
Divide u−12u6−u2−1​:u−12u6−u2−1​=2u5+u−12u5−u2−1​
Divide the leading coefficients of the numerator 2u6−u2−1
and the divisor u−1:u2u6​=2u5
Quotient=2u5
Multiply u−1 by 2u5:2u6−2u5Subtract 2u6−2u5 from 2u6−u2−1 to get new remainderRemainder=2u5−u2−1
Thereforeu−12u6−u2−1​=2u5+u−12u5−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+u−12u5−u2−1​
Divide u−12u5−u2−1​:u−12u5−u2−1​=2u4+u−12u4−u2−1​
Divide the leading coefficients of the numerator 2u5−u2−1
and the divisor u−1:u2u5​=2u4
Quotient=2u4
Multiply u−1 by 2u4:2u5−2u4Subtract 2u5−2u4 from 2u5−u2−1 to get new remainderRemainder=2u4−u2−1
Thereforeu−12u5−u2−1​=2u4+u−12u4−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+u−12u4−u2−1​
Divide u−12u4−u2−1​:u−12u4−u2−1​=2u3+u−12u3−u2−1​
Divide the leading coefficients of the numerator 2u4−u2−1
and the divisor u−1:u2u4​=2u3
Quotient=2u3
Multiply u−1 by 2u3:2u4−2u3Subtract 2u4−2u3 from 2u4−u2−1 to get new remainderRemainder=2u3−u2−1
Thereforeu−12u4−u2−1​=2u3+u−12u3−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+u−12u3−u2−1​
Divide u−12u3−u2−1​:u−12u3−u2−1​=2u2+u−1u2−1​
Divide the leading coefficients of the numerator 2u3−u2−1
and the divisor u−1:u2u3​=2u2
Quotient=2u2
Multiply u−1 by 2u2:2u3−2u2Subtract 2u3−2u2 from 2u3−u2−1 to get new remainderRemainder=u2−1
Thereforeu−12u3−u2−1​=2u2+u−1u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u−1u2−1​
Divide u−1u2−1​:u−1u2−1​=u+u−1u−1​
Divide the leading coefficients of the numerator u2−1
and the divisor u−1:uu2​=u
Quotient=u
Multiply u−1 by u:u2−uSubtract u2−u from u2−1 to get new remainderRemainder=u−1
Thereforeu−1u2−1​=u+u−1u−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+u−1u−1​
Divide u−1u−1​:u−1u−1​=1
Divide the leading coefficients of the numerator u−1
and the divisor u−1:uu​=1
Quotient=1
Multiply u−1 by 1:u−1Subtract u−1 from u−1 to get new remainderRemainder=0
Thereforeu−1u−1​=1
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
=(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
=u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru−1=0or2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve 2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0:No Solution for u∈R
2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Find one solution for 2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0 using Newton-Raphson:No Solution for u∈R
2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Newton-Raphson Approximation Definition
f(u)=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
Find f′(u):40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1
dud​(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(2u20)+dud​(2u19)+dud​(2u18)+dud​(2u17)+dud​(2u16)+dud​(2u15)+dud​(2u14)+dud​(2u13)+dud​(2u12)+dud​(2u11)+dud​(2u10)+dud​(2u9)+dud​(2u8)+dud​(2u7)+dud​(2u6)+dud​(2u5)+dud​(2u4)+dud​(2u3)+dud​(2u2)+dudu​+dud​(1)
dud​(2u20)=40u19
dud​(2u20)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u20)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅20u20−1
Simplify=40u19
dud​(2u19)=38u18
dud​(2u19)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u19)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅19u19−1
Simplify=38u18
dud​(2u18)=36u17
dud​(2u18)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u18)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅18u18−1
Simplify=36u17
dud​(2u17)=34u16
dud​(2u17)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u17)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅17u17−1
Simplify=34u16
dud​(2u16)=32u15
dud​(2u16)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u16)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅16u16−1
Simplify=32u15
dud​(2u15)=30u14
dud​(2u15)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u15)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅15u15−1
Simplify=30u14
dud​(2u14)=28u13
dud​(2u14)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u14)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅14u14−1
Simplify=28u13
dud​(2u13)=26u12
dud​(2u13)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u13)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅13u13−1
Simplify=26u12
dud​(2u12)=24u11
dud​(2u12)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u12)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅12u12−1
Simplify=24u11
dud​(2u11)=22u10
dud​(2u11)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u11)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅11u11−1
Simplify=22u10
dud​(2u10)=20u9
dud​(2u10)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u10)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅10u10−1
Simplify=20u9
dud​(2u9)=18u8
dud​(2u9)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u9)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅9u9−1
Simplify=18u8
dud​(2u8)=16u7
dud​(2u8)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u8)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅8u8−1
Simplify=16u7
dud​(2u7)=14u6
dud​(2u7)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u7)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅7u7−1
Simplify=14u6
dud​(2u6)=12u5
dud​(2u6)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅6u6−1
Simplify=12u5
dud​(2u5)=10u4
dud​(2u5)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅5u5−1
Simplify=10u4
dud​(2u4)=8u3
dud​(2u4)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplify=8u3
dud​(2u3)=6u2
dud​(2u3)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅3u3−1
Simplify=6u2
dud​(2u2)=4u
dud​(2u2)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplify=4u
dudu​=1
dudu​
Apply the common derivative: dudu​=1=1
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1+0
Simplify=40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.90476…:Δu1​=0.09523…
f(u0​)=2(−1)20+2(−1)19+2(−1)18+2(−1)17+2(−1)16+2(−1)15+2(−1)14+2(−1)13+2(−1)12+2(−1)11+2(−1)10+2(−1)9+2(−1)8+2(−1)7+2(−1)6+2(−1)5+2(−1)4+2(−1)3+2(−1)2+(−1)+1=2f′(u0​)=40(−1)19+38(−1)18+36(−1)17+34(−1)16+32(−1)15+30(−1)14+28(−1)13+26(−1)12+24(−1)11+22(−1)10+20(−1)9+18(−1)8+16(−1)7+14(−1)6+12(−1)5+10(−1)4+8(−1)3+6(−1)2+4(−1)+1=−21u1​=−0.90476…
Δu1​=∣−0.90476…−(−1)∣=0.09523…Δu1​=0.09523…
u2​=−0.58245…:Δu2​=0.32230…
f(u1​)=2(−0.90476…)20+2(−0.90476…)19+2(−0.90476…)18+2(−0.90476…)17+2(−0.90476…)16+2(−0.90476…)15+2(−0.90476…)14+2(−0.90476…)13+2(−0.90476…)12+2(−0.90476…)11+2(−0.90476…)10+2(−0.90476…)9+2(−0.90476…)8+2(−0.90476…)7+2(−0.90476…)6+2(−0.90476…)5+2(−0.90476…)4+2(−0.90476…)3+2(−0.90476…)2+(−0.90476…)+1=1.08311…f′(u1​)=40(−0.90476…)19+38(−0.90476…)18+36(−0.90476…)17+34(−0.90476…)16+32(−0.90476…)15+30(−0.90476…)14+28(−0.90476…)13+26(−0.90476…)12+24(−0.90476…)11+22(−0.90476…)10+20(−0.90476…)9+18(−0.90476…)8+16(−0.90476…)7+14(−0.90476…)6+12(−0.90476…)5+10(−0.90476…)4+8(−0.90476…)3+6(−0.90476…)2+4(−0.90476…)+1=−3.36053…u2​=−0.58245…
Δu2​=∣−0.58245…−(−0.90476…)∣=0.32230…Δu2​=0.32230…
u3​=3.61022…:Δu3​=4.19268…
f(u2​)=2(−0.58245…)20+2(−0.58245…)19+2(−0.58245…)18+2(−0.58245…)17+2(−0.58245…)16+2(−0.58245…)15+2(−0.58245…)14+2(−0.58245…)13+2(−0.58245…)12+2(−0.58245…)11+2(−0.58245…)10+2(−0.58245…)9+2(−0.58245…)8+2(−0.58245…)7+2(−0.58245…)6+2(−0.58245…)5+2(−0.58245…)4+2(−0.58245…)3+2(−0.58245…)2+(−0.58245…)+1=0.84632…f′(u2​)=40(−0.58245…)19+38(−0.58245…)18+36(−0.58245…)17+34(−0.58245…)16+32(−0.58245…)15+30(−0.58245…)14+28(−0.58245…)13+26(−0.58245…)12+24(−0.58245…)11+22(−0.58245…)10+20(−0.58245…)9+18(−0.58245…)8+16(−0.58245…)7+14(−0.58245…)6+12(−0.58245…)5+10(−0.58245…)4+8(−0.58245…)3+6(−0.58245…)2+4(−0.58245…)+1=−0.20185…u3​=3.61022…
Δu3​=∣3.61022…−(−0.58245…)∣=4.19268…Δu3​=4.19268…
u4​=3.42618…:Δu4​=0.18403…
f(u3​)=2⋅3.61022…20+2⋅3.61022…19+2⋅3.61022…18+2⋅3.61022…17+2⋅3.61022…16+2⋅3.61022…15+2⋅3.61022…14+2⋅3.61022…13+2⋅3.61022…12+2⋅3.61022…11+2⋅3.61022…10+2⋅3.61022…9+2⋅3.61022…8+2⋅3.61022…7+2⋅3.61022…6+2⋅3.61022…5+2⋅3.61022…4+2⋅3.61022…3+2⋅3.61022…2+3.61022…+1=391356105797.3665f′(u3​)=40⋅3.61022…19+38⋅3.61022…18+36⋅3.61022…17+34⋅3.61022…16+32⋅3.61022…15+30⋅3.61022…14+28⋅3.61022…13+26⋅3.61022…12+24⋅3.61022…11+22⋅3.61022…10+20⋅3.61022…9+18⋅3.61022…8+16⋅3.61022…7+14⋅3.61022…6+12⋅3.61022…5+10⋅3.61022…4+8⋅3.61022…3+6⋅3.61022…2+4⋅3.61022…+1=2126512839249.2053u4​=3.42618…
Δu4​=∣3.42618…−3.61022…∣=0.18403…Δu4​=0.18403…
u5​=3.25127…:Δu5​=0.17491…
f(u4​)=2⋅3.42618…20+2⋅3.42618…19+2⋅3.42618…18+2⋅3.42618…17+2⋅3.42618…16+2⋅3.42618…15+2⋅3.42618…14+2⋅3.42618…13+2⋅3.42618…12+2⋅3.42618…11+2⋅3.42618…10+2⋅3.42618…9+2⋅3.42618…8+2⋅3.42618…7+2⋅3.42618…6+2⋅3.42618…5+2⋅3.42618…4+2⋅3.42618…3+2⋅3.42618…2+3.42618…+1=140327262334.09973f′(u4​)=40⋅3.42618…19+38⋅3.42618…18+36⋅3.42618…17+34⋅3.42618…16+32⋅3.42618…15+30⋅3.42618…14+28⋅3.42618…13+26⋅3.42618…12+24⋅3.42618…11+22⋅3.42618…10+20⋅3.42618…9+18⋅3.42618…8+16⋅3.42618…7+14⋅3.42618…6+12⋅3.42618…5+10⋅3.42618…4+8⋅3.42618…3+6⋅3.42618…2+4⋅3.42618…+1=802263679492.2867u5​=3.25127…
Δu5​=∣3.25127…−3.42618…∣=0.17491…Δu5​=0.17491…
u6​=3.08501…:Δu6​=0.16625…
f(u5​)=2⋅3.25127…20+2⋅3.25127…19+2⋅3.25127…18+2⋅3.25127…17+2⋅3.25127…16+2⋅3.25127…15+2⋅3.25127…14+2⋅3.25127…13+2⋅3.25127…12+2⋅3.25127…11+2⋅3.25127…10+2⋅3.25127…9+2⋅3.25127…8+2⋅3.25127…7+2⋅3.25127…6+2⋅3.25127…5+2⋅3.25127…4+2⋅3.25127…3+2⋅3.25127…2+3.25127…+1=50318521009.06572f′(u5​)=40⋅3.25127…19+38⋅3.25127…18+36⋅3.25127…17+34⋅3.25127…16+32⋅3.25127…15+30⋅3.25127…14+28⋅3.25127…13+26⋅3.25127…12+24⋅3.25127…11+22⋅3.25127…10+20⋅3.25127…9+18⋅3.25127…8+16⋅3.25127…7+14⋅3.25127…6+12⋅3.25127…5+10⋅3.25127…4+8⋅3.25127…3+6⋅3.25127…2+4⋅3.25127…+1=302656481865.62994u6​=3.08501…
Δu6​=∣3.08501…−3.25127…∣=0.16625…Δu6​=0.16625…
u7​=2.92697…:Δu7​=0.15804…
f(u6​)=2⋅3.08501…20+2⋅3.08501…19+2⋅3.08501…18+2⋅3.08501…17+2⋅3.08501…16+2⋅3.08501…15+2⋅3.08501…14+2⋅3.08501…13+2⋅3.08501…12+2⋅3.08501…11+2⋅3.08501…10+2⋅3.08501…9+2⋅3.08501…8+2⋅3.08501…7+2⋅3.08501…6+2⋅3.08501…5+2⋅3.08501…4+2⋅3.08501…3+2⋅3.08501…2+3.08501…+1=18043992829.22628f′(u6​)=40⋅3.08501…19+38⋅3.08501…18+36⋅3.08501…17+34⋅3.08501…16+32⋅3.08501…15+30⋅3.08501…14+28⋅3.08501…13+26⋅3.08501…12+24⋅3.08501…11+22⋅3.08501…10+20⋅3.08501…9+18⋅3.08501…8+16⋅3.08501…7+14⋅3.08501…6+12⋅3.08501…5+10⋅3.08501…4+8⋅3.08501…3+6⋅3.08501…2+4⋅3.08501…+1=114172983680.20372u7​=2.92697…
Δu7​=∣2.92697…−3.08501…∣=0.15804…Δu7​=0.15804…
u8​=2.77673…:Δu8​=0.15024…
f(u7​)=2⋅2.92697…20+2⋅2.92697…19+2⋅2.92697…18+2⋅2.92697…17+2⋅2.92697…16+2⋅2.92697…15+2⋅2.92697…14+2⋅2.92697…13+2⋅2.92697…12+2⋅2.92697…11+2⋅2.92697…10+2⋅2.92697…9+2⋅2.92697…8+2⋅2.92697…7+2⋅2.92697…6+2⋅2.92697…5+2⋅2.92697…4+2⋅2.92697…3+2⋅2.92697…2+2.92697…+1=6470833347.00402f′(u7​)=40⋅2.92697…19+38⋅2.92697…18+36⋅2.92697…17+34⋅2.92697…16+32⋅2.92697…15+30⋅2.92697…14+28⋅2.92697…13+26⋅2.92697…12+24⋅2.92697…11+22⋅2.92697…10+20⋅2.92697…9+18⋅2.92697…8+16⋅2.92697…7+14⋅2.92697…6+12⋅2.92697…5+10⋅2.92697…4+8⋅2.92697…3+6⋅2.92697…2+4⋅2.92697…+1=43067856733.97665u8​=2.77673…
Δu8​=∣2.77673…−2.92697…∣=0.15024…Δu8​=0.15024…
u9​=2.63387…:Δu9​=0.14285…
f(u8​)=2⋅2.77673…20+2⋅2.77673…19+2⋅2.77673…18+2⋅2.77673…17+2⋅2.77673…16+2⋅2.77673…15+2⋅2.77673…14+2⋅2.77673…13+2⋅2.77673…12+2⋅2.77673…11+2⋅2.77673…10+2⋅2.77673…9+2⋅2.77673…8+2⋅2.77673…7+2⋅2.77673…6+2⋅2.77673…5+2⋅2.77673…4+2⋅2.77673…3+2⋅2.77673…2+2.77673…+1=2320680563.35344…f′(u8​)=40⋅2.77673…19+38⋅2.77673…18+36⋅2.77673…17+34⋅2.77673…16+32⋅2.77673…15+30⋅2.77673…14+28⋅2.77673…13+26⋅2.77673…12+24⋅2.77673…11+22⋅2.77673…10+20⋅2.77673…9+18⋅2.77673…8+16⋅2.77673…7+14⋅2.77673…6+12⋅2.77673…5+10⋅2.77673…4+8⋅2.77673…3+6⋅2.77673…2+4⋅2.77673…+1=16244812495.12528u9​=2.63387…
Δu9​=∣2.63387…−2.77673…∣=0.14285…Δu9​=0.14285…
u10​=2.49802…:Δu10​=0.13585…
f(u9​)=2⋅2.63387…20+2⋅2.63387…19+2⋅2.63387…18+2⋅2.63387…17+2⋅2.63387…16+2⋅2.63387…15+2⋅2.63387…14+2⋅2.63387…13+2⋅2.63387…12+2⋅2.63387…11+2⋅2.63387…10+2⋅2.63387…9+2⋅2.63387…8+2⋅2.63387…7+2⋅2.63387…6+2⋅2.63387…5+2⋅2.63387…4+2⋅2.63387…3+2⋅2.63387…2+2.63387…+1=832346488.77442…f′(u9​)=40⋅2.63387…19+38⋅2.63387…18+36⋅2.63387…17+34⋅2.63387…16+32⋅2.63387…15+30⋅2.63387…14+28⋅2.63387…13+26⋅2.63387…12+24⋅2.63387…11+22⋅2.63387…10+20⋅2.63387…9+18⋅2.63387…8+16⋅2.63387…7+14⋅2.63387…6+12⋅2.63387…5+10⋅2.63387…4+8⋅2.63387…3+6⋅2.63387…2+4⋅2.63387…+1=6126907579.45191…u10​=2.49802…
Δu10​=∣2.49802…−2.63387…∣=0.13585…Δu10​=0.13585…
u11​=2.36880…:Δu11​=0.12921…
f(u10​)=2⋅2.49802…20+2⋅2.49802…19+2⋅2.49802…18+2⋅2.49802…17+2⋅2.49802…16+2⋅2.49802…15+2⋅2.49802…14+2⋅2.49802…13+2⋅2.49802…12+2⋅2.49802…11+2⋅2.49802…10+2⋅2.49802…9+2⋅2.49802…8+2⋅2.49802…7+2⋅2.49802…6+2⋅2.49802…5+2⋅2.49802…4+2⋅2.49802…3+2⋅2.49802…2+2.49802…+1=298561855.74542…f′(u10​)=40⋅2.49802…19+38⋅2.49802…18+36⋅2.49802…17+34⋅2.49802…16+32⋅2.49802…15+30⋅2.49802…14+28⋅2.49802…13+26⋅2.49802…12+24⋅2.49802…11+22⋅2.49802…10+20⋅2.49802…9+18⋅2.49802…8+16⋅2.49802…7+14⋅2.49802…6+12⋅2.49802…5+10⋅2.49802…4+8⋅2.49802…3+6⋅2.49802…2+4⋅2.49802…+1=2310601127.77513…u11​=2.36880…
Δu11​=∣2.36880…−2.49802…∣=0.12921…Δu11​=0.12921…
u12​=2.24587…:Δu12​=0.12293…
f(u11​)=2⋅2.36880…20+2⋅2.36880…19+2⋅2.36880…18+2⋅2.36880…17+2⋅2.36880…16+2⋅2.36880…15+2⋅2.36880…14+2⋅2.36880…13+2⋅2.36880…12+2⋅2.36880…11+2⋅2.36880…10+2⋅2.36880…9+2⋅2.36880…8+2⋅2.36880…7+2⋅2.36880…6+2⋅2.36880…5+2⋅2.36880…4+2⋅2.36880…3+2⋅2.36880…2+2.36880…+1=107106520.29046…f′(u11​)=40⋅2.36880…19+38⋅2.36880…18+36⋅2.36880…17+34⋅2.36880…16+32⋅2.36880…15+30⋅2.36880…14+28⋅2.36880…13+26⋅2.36880…12+24⋅2.36880…11+22⋅2.36880…10+20⋅2.36880…9+18⋅2.36880…8+16⋅2.36880…7+14⋅2.36880…6+12⋅2.36880…5+10⋅2.36880…4+8⋅2.36880…3+6⋅2.36880…2+4⋅2.36880…+1=871274563.57524…u12​=2.24587…
Δu12​=∣2.24587…−2.36880…∣=0.12293…Δu12​=0.12293…
u13​=2.12888…:Δu13​=0.11698…
f(u12​)=2⋅2.24587…20+2⋅2.24587…19+2⋅2.24587…18+2⋅2.24587…17+2⋅2.24587…16+2⋅2.24587…15+2⋅2.24587…14+2⋅2.24587…13+2⋅2.24587…12+2⋅2.24587…11+2⋅2.24587…10+2⋅2.24587…9+2⋅2.24587…8+2⋅2.24587…7+2⋅2.24587…6+2⋅2.24587…5+2⋅2.24587…4+2⋅2.24587…3+2⋅2.24587…2+2.24587…+1=38429268.19821…f′(u12​)=40⋅2.24587…19+38⋅2.24587…18+36⋅2.24587…17+34⋅2.24587…16+32⋅2.24587…15+30⋅2.24587…14+28⋅2.24587…13+26⋅2.24587…12+24⋅2.24587…11+22⋅2.24587…10+20⋅2.24587…9+18⋅2.24587…8+16⋅2.24587…7+14⋅2.24587…6+12⋅2.24587…5+10⋅2.24587…4+8⋅2.24587…3+6⋅2.24587…2+4⋅2.24587…+1=328486438.92554…u13​=2.12888…
Δu13​=∣2.12888…−2.24587…∣=0.11698…Δu13​=0.11698…
u14​=2.01751…:Δu14​=0.11137…
f(u13​)=2⋅2.12888…20+2⋅2.12888…19+2⋅2.12888…18+2⋅2.12888…17+2⋅2.12888…16+2⋅2.12888…15+2⋅2.12888…14+2⋅2.12888…13+2⋅2.12888…12+2⋅2.12888…11+2⋅2.12888…10+2⋅2.12888…9+2⋅2.12888…8+2⋅2.12888…7+2⋅2.12888…6+2⋅2.12888…5+2⋅2.12888…4+2⋅2.12888…3+2⋅2.12888…2+2.12888…+1=13790835.58464…f′(u13​)=40⋅2.12888…19+38⋅2.12888…18+36⋅2.12888…17+34⋅2.12888…16+32⋅2.12888…15+30⋅2.12888…14+28⋅2.12888…13+26⋅2.12888…12+24⋅2.12888…11+22⋅2.12888…10+20⋅2.12888…9+18⋅2.12888…8+16⋅2.12888…7+14⋅2.12888…6+12⋅2.12888…5+10⋅2.12888…4+8⋅2.12888…3+6⋅2.12888…2+4⋅2.12888…+1=123820714.41332…u14​=2.01751…
Δu14​=∣2.01751…−2.12888…∣=0.11137…Δu14​=0.11137…
u15​=1.91142…:Δu15​=0.10608…
f(u14​)=2⋅2.01751…20+2⋅2.01751…19+2⋅2.01751…18+2⋅2.01751…17+2⋅2.01751…16+2⋅2.01751…15+2⋅2.01751…14+2⋅2.01751…13+2⋅2.01751…12+2⋅2.01751…11+2⋅2.01751…10+2⋅2.01751…9+2⋅2.01751…8+2⋅2.01751…7+2⋅2.01751…6+2⋅2.01751…5+2⋅2.01751…4+2⋅2.01751…3+2⋅2.01751…2+2.01751…+1=4950229.82773…f′(u14​)=40⋅2.01751…19+38⋅2.01751…18+36⋅2.01751…17+34⋅2.01751…16+32⋅2.01751…15+30⋅2.01751…14+28⋅2.01751…13+26⋅2.01751…12+24⋅2.01751…11+22⋅2.01751…10+20⋅2.01751…9+18⋅2.01751…8+16⋅2.01751…7+14⋅2.01751…6+12⋅2.01751…5+10⋅2.01751…4+8⋅2.01751…3+6⋅2.01751…2+4⋅2.01751…+1=46661280.69367…u15​=1.91142…
Δu15​=∣1.91142…−2.01751…∣=0.10608…Δu15​=0.10608…
u16​=1.81030…:Δu16​=0.10111…
f(u15​)=2⋅1.91142…20+2⋅1.91142…19+2⋅1.91142…18+2⋅1.91142…17+2⋅1.91142…16+2⋅1.91142…15+2⋅1.91142…14+2⋅1.91142…13+2⋅1.91142…12+2⋅1.91142…11+2⋅1.91142…10+2⋅1.91142…9+2⋅1.91142…8+2⋅1.91142…7+2⋅1.91142…6+2⋅1.91142…5+2⋅1.91142…4+2⋅1.91142…3+2⋅1.91142…2+1.91142…+1=1777460.56654…f′(u15​)=40⋅1.91142…19+38⋅1.91142…18+36⋅1.91142…17+34⋅1.91142…16+32⋅1.91142…15+30⋅1.91142…14+28⋅1.91142…13+26⋅1.91142…12+24⋅1.91142…11+22⋅1.91142…10+20⋅1.91142…9+18⋅1.91142…8+16⋅1.91142…7+14⋅1.91142…6+12⋅1.91142…5+10⋅1.91142…4+8⋅1.91142…3+6⋅1.91142…2+4⋅1.91142…+1=17578062.54966…u16​=1.81030…
Δu16​=∣1.81030…−1.91142…∣=0.10111…Δu16​=0.10111…
u17​=1.71383…:Δu17​=0.09646…
f(u16​)=2⋅1.81030…20+2⋅1.81030…19+2⋅1.81030…18+2⋅1.81030…17+2⋅1.81030…16+2⋅1.81030…15+2⋅1.81030…14+2⋅1.81030…13+2⋅1.81030…12+2⋅1.81030…11+2⋅1.81030…10+2⋅1.81030…9+2⋅1.81030…8+2⋅1.81030…7+2⋅1.81030…6+2⋅1.81030…5+2⋅1.81030…4+2⋅1.81030…3+2⋅1.81030…2+1.81030…+1=638502.05884…f′(u16​)=40⋅1.81030…19+38⋅1.81030…18+36⋅1.81030…17+34⋅1.81030…16+32⋅1.81030…15+30⋅1.81030…14+28⋅1.81030…13+26⋅1.81030…12+24⋅1.81030…11+22⋅1.81030…10+20⋅1.81030…9+18⋅1.81030…8+16⋅1.81030…7+14⋅1.81030…6+12⋅1.81030…5+10⋅1.81030…4+8⋅1.81030…3+6⋅1.81030…2+4⋅1.81030…+1=6618867.78758…u17​=1.71383…
Δu17​=∣1.71383…−1.81030…∣=0.09646…Δu17​=0.09646…
u18​=1.62169…:Δu18​=0.09214…
f(u17​)=2⋅1.71383…20+2⋅1.71383…19+2⋅1.71383…18+2⋅1.71383…17+2⋅1.71383…16+2⋅1.71383…15+2⋅1.71383…14+2⋅1.71383…13+2⋅1.71383…12+2⋅1.71383…11+2⋅1.71383…10+2⋅1.71383…9+2⋅1.71383…8+2⋅1.71383…7+2⋅1.71383…6+2⋅1.71383…5+2⋅1.71383…4+2⋅1.71383…3+2⋅1.71383…2+1.71383…+1=229500.02828…f′(u17​)=40⋅1.71383…19+38⋅1.71383…18+36⋅1.71383…17+34⋅1.71383…16+32⋅1.71383…15+30⋅1.71383…14+28⋅1.71383…13+26⋅1.71383…12+24⋅1.71383…11+22⋅1.71383…10+20⋅1.71383…9+18⋅1.71383…8+16⋅1.71383…7+14⋅1.71383…6+12⋅1.71383…5+10⋅1.71383…4+8⋅1.71383…3+6⋅1.71383…2+4⋅1.71383…+1=2490671.57675…u18​=1.62169…
Δu18​=∣1.62169…−1.71383…∣=0.09214…Δu18​=0.09214…
u19​=1.53352…:Δu19​=0.08816…
f(u18​)=2⋅1.62169…20+2⋅1.62169…19+2⋅1.62169…18+2⋅1.62169…17+2⋅1.62169…16+2⋅1.62169…15+2⋅1.62169…14+2⋅1.62169…13+2⋅1.62169…12+2⋅1.62169…11+2⋅1.62169…10+2⋅1.62169…9+2⋅1.62169…8+2⋅1.62169…7+2⋅1.62169…6+2⋅1.62169…5+2⋅1.62169…4+2⋅1.62169…3+2⋅1.62169…2+1.62169…+1=82559.70843…f′(u18​)=40⋅1.62169…19+38⋅1.62169…18+36⋅1.62169…17+34⋅1.62169…16+32⋅1.62169…15+30⋅1.62169…14+28⋅1.62169…13+26⋅1.62169…12+24⋅1.62169…11+22⋅1.62169…10+20⋅1.62169…9+18⋅1.62169…8+16⋅1.62169…7+14⋅1.62169…6+12⋅1.62169…5+10⋅1.62169…4+8⋅1.62169…3+6⋅1.62169…2+4⋅1.62169…+1=936373.05744…u19​=1.53352…
Δu19​=∣1.53352…−1.62169…∣=0.08816…Δu19​=0.08816…
u20​=1.44893…:Δu20​=0.08458…
f(u19​)=2⋅1.53352…20+2⋅1.53352…19+2⋅1.53352…18+2⋅1.53352…17+2⋅1.53352…16+2⋅1.53352…15+2⋅1.53352…14+2⋅1.53352…13+2⋅1.53352…12+2⋅1.53352…11+2⋅1.53352…10+2⋅1.53352…9+2⋅1.53352…8+2⋅1.53352…7+2⋅1.53352…6+2⋅1.53352…5+2⋅1.53352…4+2⋅1.53352…3+2⋅1.53352…2+1.53352…+1=29736.26727…f′(u19​)=40⋅1.53352…19+38⋅1.53352…18+36⋅1.53352…17+34⋅1.53352…16+32⋅1.53352…15+30⋅1.53352…14+28⋅1.53352…13+26⋅1.53352…12+24⋅1.53352…11+22⋅1.53352…10+20⋅1.53352…9+18⋅1.53352…8+16⋅1.53352…7+14⋅1.53352…6+12⋅1.53352…5+10⋅1.53352…4+8⋅1.53352…3+6⋅1.53352…2+4⋅1.53352…+1=351551.64069…u20​=1.44893…
Δu20​=∣1.44893…−1.53352…∣=0.08458…Δu20​=0.08458…
u21​=1.36746…:Δu21​=0.08146…
f(u20​)=2⋅1.44893…20+2⋅1.44893…19+2⋅1.44893…18+2⋅1.44893…17+2⋅1.44893…16+2⋅1.44893…15+2⋅1.44893…14+2⋅1.44893…13+2⋅1.44893…12+2⋅1.44893…11+2⋅1.44893…10+2⋅1.44893…9+2⋅1.44893…8+2⋅1.44893…7+2⋅1.44893…6+2⋅1.44893…5+2⋅1.44893…4+2⋅1.44893…3+2⋅1.44893…2+1.44893…+1=10730.28828…f′(u20​)=40⋅1.44893…19+38⋅1.44893…18+36⋅1.44893…17+34⋅1.44893…16+32⋅1.44893…15+30⋅1.44893…14+28⋅1.44893…13+26⋅1.44893…12+24⋅1.44893…11+22⋅1.44893…10+20⋅1.44893…9+18⋅1.44893…8+16⋅1.44893…7+14⋅1.44893…6+12⋅1.44893…5+10⋅1.44893…4+8⋅1.44893…3+6⋅1.44893…2+4⋅1.44893…+1=131710.17919…u21​=1.36746…
Δu21​=∣1.36746…−1.44893…∣=0.08146…Δu21​=0.08146…
u22​=1.28850…:Δu22​=0.07896…
f(u21​)=2⋅1.36746…20+2⋅1.36746…19+2⋅1.36746…18+2⋅1.36746…17+2⋅1.36746…16+2⋅1.36746…15+2⋅1.36746…14+2⋅1.36746…13+2⋅1.36746…12+2⋅1.36746…11+2⋅1.36746…10+2⋅1.36746…9+2⋅1.36746…8+2⋅1.36746…7+2⋅1.36746…6+2⋅1.36746…5+2⋅1.36746…4+2⋅1.36746…3+2⋅1.36746…2+1.36746…+1=3883.34198…f′(u21​)=40⋅1.36746…19+38⋅1.36746…18+36⋅1.36746…17+34⋅1.36746…16+32⋅1.36746…15+30⋅1.36746…14+28⋅1.36746…13+26⋅1.36746…12+24⋅1.36746…11+22⋅1.36746…10+20⋅1.36746…9+18⋅1.36746…8+16⋅1.36746…7+14⋅1.36746…6+12⋅1.36746…5+10⋅1.36746…4+8⋅1.36746…3+6⋅1.36746…2+4⋅1.36746…+1=49180.53699…u22​=1.28850…
Δu22​=∣1.28850…−1.36746…∣=0.07896…Δu22​=0.07896…
u23​=1.21118…:Δu23​=0.07732…
f(u22​)=2⋅1.28850…20+2⋅1.28850…19+2⋅1.28850…18+2⋅1.28850…17+2⋅1.28850…16+2⋅1.28850…15+2⋅1.28850…14+2⋅1.28850…13+2⋅1.28850…12+2⋅1.28850…11+2⋅1.28850…10+2⋅1.28850…9+2⋅1.28850…8+2⋅1.28850…7+2⋅1.28850…6+2⋅1.28850…5+2⋅1.28850…4+2⋅1.28850…3+2⋅1.28850…2+1.28850…+1=1412.13758…f′(u22​)=40⋅1.28850…19+38⋅1.28850…18+36⋅1.28850…17+34⋅1.28850…16+32⋅1.28850…15+30⋅1.28850…14+28⋅1.28850…13+26⋅1.28850…12+24⋅1.28850…11+22⋅1.28850…10+20⋅1.28850…9+18⋅1.28850…8+16⋅1.28850…7+14⋅1.28850…6+12⋅1.28850…5+10⋅1.28850…4+8⋅1.28850…3+6⋅1.28850…2+4⋅1.28850…+1=18261.62900…u23​=1.21118…
Δu23​=∣1.21118…−1.28850…∣=0.07732…Δu23​=0.07732…
u24​=1.13409…:Δu24​=0.07708…
f(u23​)=2⋅1.21118…20+2⋅1.21118…19+2⋅1.21118…18+2⋅1.21118…17+2⋅1.21118…16+2⋅1.21118…15+2⋅1.21118…14+2⋅1.21118…13+2⋅1.21118…12+2⋅1.21118…11+2⋅1.21118…10+2⋅1.21118…9+2⋅1.21118…8+2⋅1.21118…7+2⋅1.21118…6+2⋅1.21118…5+2⋅1.21118…4+2⋅1.21118…3+2⋅1.21118…2+1.21118…+1=517.69016…f′(u23​)=40⋅1.21118…19+38⋅1.21118…18+36⋅1.21118…17+34⋅1.21118…16+32⋅1.21118…15+30⋅1.21118…14+28⋅1.21118…13+26⋅1.21118…12+24⋅1.21118…11+22⋅1.21118…10+20⋅1.21118…9+18⋅1.21118…8+16⋅1.21118…7+14⋅1.21118…6+12⋅1.21118…5+10⋅1.21118…4+8⋅1.21118…3+6⋅1.21118…2+4⋅1.21118…+1=6715.60947…u24​=1.13409…
Δu24​=∣1.13409…−1.21118…∣=0.07708…Δu24​=0.07708…
u25​=1.05480…:Δu25​=0.07929…
f(u24​)=2⋅1.13409…20+2⋅1.13409…19+2⋅1.13409…18+2⋅1.13409…17+2⋅1.13409…16+2⋅1.13409…15+2⋅1.13409…14+2⋅1.13409…13+2⋅1.13409…12+2⋅1.13409…11+2⋅1.13409…10+2⋅1.13409…9+2⋅1.13409…8+2⋅1.13409…7+2⋅1.13409…6+2⋅1.13409…5+2⋅1.13409…4+2⋅1.13409…3+2⋅1.13409…2+1.13409…+1=192.47985…f′(u24​)=40⋅1.13409…19+38⋅1.13409…18+36⋅1.13409…17+34⋅1.13409…16+32⋅1.13409…15+30⋅1.13409…14+28⋅1.13409…13+26⋅1.13409…12+24⋅1.13409…11+22⋅1.13409…10+20⋅1.13409…9+18⋅1.13409…8+16⋅1.13409…7+14⋅1.13409…6+12⋅1.13409…5+10⋅1.13409…4+8⋅1.13409…3+6⋅1.13409…2+4⋅1.13409…+1=2427.51025…u25​=1.05480…
Δu25​=∣1.05480…−1.13409…∣=0.07929…Δu25​=0.07929…
u26​=0.96859…:Δu26​=0.08620…
f(u25​)=2⋅1.05480…20+2⋅1.05480…19+2⋅1.05480…18+2⋅1.05480…17+2⋅1.05480…16+2⋅1.05480…15+2⋅1.05480…14+2⋅1.05480…13+2⋅1.05480…12+2⋅1.05480…11+2⋅1.05480…10+2⋅1.05480…9+2⋅1.05480…8+2⋅1.05480…7+2⋅1.05480…6+2⋅1.05480…5+2⋅1.05480…4+2⋅1.05480…3+2⋅1.05480…2+1.05480…+1=73.34809…f′(u25​)=40⋅1.05480…19+38⋅1.05480…18+36⋅1.05480…17+34⋅1.05480…16+32⋅1.05480…15+30⋅1.05480…14+28⋅1.05480…13+26⋅1.05480…12+24⋅1.05480…11+22⋅1.05480…10+20⋅1.05480…9+18⋅1.05480…8+16⋅1.05480…7+14⋅1.05480…6+12⋅1.05480…5+10⋅1.05480…4+8⋅1.05480…3+6⋅1.05480…2+4⋅1.05480…+1=850.85072…u26​=0.96859…
Δu26​=∣0.96859…−1.05480…∣=0.08620…Δu26​=0.08620…
Cannot find solution
The solution isNoSolutionforu∈R
The solutions areu=0,u=1
Substitute back u=sin(x)sin(x)=0,sin(x)=1
sin(x)=0,sin(x)=1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(1+tan^2(x))/(1+sec(x))=sec(x)-sin^2(x)+2cos(x)-2=0sin(5x-1)= 4/5sin^2(x)= 1/36tan(x)=31

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^3(x)+sin(x)=2sin^{22}(x) ?

    The general solution for sin^3(x)+sin(x)=2sin^{22}(x) is x=2pin,x=pi+2pin,x= pi/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024