Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(x)+tan^2(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x)+tan2(x)=2

Solution

x=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=45∘+360∘n,x=315∘+360∘n
Solution steps
2cos2(x)+tan2(x)=2
Subtract 2 from both sides2cos2(x)+tan2(x)−2=0
Rewrite using trig identities
−2+tan2(x)+2cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+tan2(x)+2(1−sin2(x))
Simplify −2+tan2(x)+2(1−sin2(x)):tan2(x)−2sin2(x)
−2+tan2(x)+2(1−sin2(x))
Expand 2(1−sin2(x)):2−2sin2(x)
2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=sin2(x)=2⋅1−2sin2(x)
Multiply the numbers: 2⋅1=2=2−2sin2(x)
=−2+tan2(x)+2−2sin2(x)
Simplify −2+tan2(x)+2−2sin2(x):tan2(x)−2sin2(x)
−2+tan2(x)+2−2sin2(x)
Group like terms=tan2(x)−2sin2(x)−2+2
−2+2=0=tan2(x)−2sin2(x)
=tan2(x)−2sin2(x)
=tan2(x)−2sin2(x)
tan2(x)−2sin2(x)=0
Factor tan2(x)−2sin2(x):(tan(x)+2​sin(x))(tan(x)−2​sin(x))
tan2(x)−2sin2(x)
Rewrite tan2(x)−2sin2(x) as tan2(x)−(2​sin(x))2
tan2(x)−2sin2(x)
Apply radical rule: a=(a​)22=(2​)2=tan2(x)−(2​)2sin2(x)
Apply exponent rule: ambm=(ab)m(2​)2sin2(x)=(2​sin(x))2=tan2(x)−(2​sin(x))2
=tan2(x)−(2​sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)tan2(x)−(2​sin(x))2=(tan(x)+2​sin(x))(tan(x)−2​sin(x))=(tan(x)+2​sin(x))(tan(x)−2​sin(x))
(tan(x)+sin(x)2​)(tan(x)−sin(x)2​)=0
Solving each part separatelytan(x)+sin(x)2​=0ortan(x)−sin(x)2​=0
tan(x)+sin(x)2​=0:x=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn
tan(x)+sin(x)2​=0
Express with sin, cos
tan(x)+sin(x)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)sin(x)​+sin(x)2​
Simplify cos(x)sin(x)​+sin(x)2​:cos(x)sin(x)+2​sin(x)cos(x)​
cos(x)sin(x)​+sin(x)2​
Convert element to fraction: 2​sin(x)=cos(x)sin(x)2​cos(x)​=cos(x)sin(x)​+cos(x)sin(x)2​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)+sin(x)2​cos(x)​
=cos(x)sin(x)+2​sin(x)cos(x)​
cos(x)sin(x)+cos(x)sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=0sin(x)+cos(x)sin(x)2​=0
Factor sin(x)+cos(x)sin(x)2​:sin(x)(1+2​cos(x))
sin(x)+cos(x)sin(x)2​
Factor out common term sin(x)=sin(x)(1+cos(x)2​)
sin(x)(1+2​cos(x))=0
Solving each part separatelysin(x)=0or1+2​cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
1+2​cos(x)=0:x=43π​+2πn,x=45π​+2πn
1+2​cos(x)=0
Move 1to the right side
1+2​cos(x)=0
Subtract 1 from both sides1+2​cos(x)−1=0−1
Simplify2​cos(x)=−1
2​cos(x)=−1
Divide both sides by 2​
2​cos(x)=−1
Divide both sides by 2​2​2​cos(x)​=2​−1​
Simplify
2​2​cos(x)​=2​−1​
Simplify 2​2​cos(x)​:cos(x)
2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(x)=−22​​
cos(x)=−22​​
cos(x)=−22​​
General solutions for cos(x)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn
tan(x)−sin(x)2​=0:x=2πn,x=π+2πn,x=4π​+2πn,x=47π​+2πn
tan(x)−sin(x)2​=0
Express with sin, cos
tan(x)−sin(x)2​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(x)sin(x)​−sin(x)2​
Simplify cos(x)sin(x)​−sin(x)2​:cos(x)sin(x)−2​sin(x)cos(x)​
cos(x)sin(x)​−sin(x)2​
Convert element to fraction: 2​sin(x)=cos(x)sin(x)2​cos(x)​=cos(x)sin(x)​−cos(x)sin(x)2​cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−sin(x)2​cos(x)​
=cos(x)sin(x)−2​sin(x)cos(x)​
cos(x)sin(x)−cos(x)sin(x)2​​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−cos(x)sin(x)2​=0
Factor sin(x)−cos(x)sin(x)2​:sin(x)(1−2​cos(x))
sin(x)−cos(x)sin(x)2​
Factor out common term sin(x)=sin(x)(1−cos(x)2​)
sin(x)(1−2​cos(x))=0
Solving each part separatelysin(x)=0or1−2​cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
1−2​cos(x)=0:x=4π​+2πn,x=47π​+2πn
1−2​cos(x)=0
Move 1to the right side
1−2​cos(x)=0
Subtract 1 from both sides1−2​cos(x)−1=0−1
Simplify−2​cos(x)=−1
−2​cos(x)=−1
Divide both sides by −2​
−2​cos(x)=−1
Divide both sides by −2​−2​−2​cos(x)​=−2​−1​
Simplify
−2​−2​cos(x)​=−2​−1​
Simplify −2​−2​cos(x)​:cos(x)
−2​−2​cos(x)​
Apply the fraction rule: −b−a​=ba​=2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
cos(x)=22​​
cos(x)=22​​
cos(x)=22​​
General solutions for cos(x)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=4π​+2πn,x=47π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=43π​+2πn,x=45π​+2πn,x=4π​+2πn,x=47π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^3(o)=4sin(o)sin^2(o)sin^4(o)cos^2(x)=-48sin^4(x)-6sin^2(x)+1=04sin^2(x)+2cos(x)+a=3cos^5(x)+cos(x)+4cos^2(x)=2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024