Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^3(o)=4sin(o)sin^2(o)sin^4(o)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin3(o)=4sin(o)sin2(o)sin4(o)

Solution

o=2πn,o=π+2πn,o=45π​+2πn,o=47π​+2πn,o=4π​+2πn,o=43π​+2πn
+1
Degrees
o=0∘+360∘n,o=180∘+360∘n,o=225∘+360∘n,o=315∘+360∘n,o=45∘+360∘n,o=135∘+360∘n
Solution steps
sin3(o)=4sin(o)sin2(o)sin4(o)
Solve by substitution
sin3(o)=4sin(o)sin2(o)sin4(o)
Let: sin(o)=uu3=4uu2u4
u3=4uu2u4:u=0,u=i21​​,u=−i21​​,u=−22​​,u=22​​
u3=4uu2u4
Switch sides4uu2u4=u3
Move u3to the left side
4uu2u4=u3
Subtract u3 from both sides4uu2u4−u3=u3−u3
Simplify4u7−u3=0
4u7−u3=0
Factor 4u7−u3:u3(2u2+1)(2​u+1)(2​u−1)
4u7−u3
Factor out common term u3:u3(4u4−1)
4u7−u3
Apply exponent rule: ab+c=abacu7=u4u3=4u4u3−u3
Factor out common term u3=u3(4u4−1)
=u3(4u4−1)
Factor 4u4−1:(2u2+1)(2​u+1)(2​u−1)
4u4−1
Rewrite 4u4−1 as (2u2)2−12
4u4−1
Rewrite 4 as 22=22u4−1
Rewrite 1 as 12=22u4−12
Apply exponent rule: abc=(ab)cu4=(u2)2=22(u2)2−12
Apply exponent rule: ambm=(ab)m22(u2)2=(2u2)2=(2u2)2−12
=(2u2)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2u2)2−12=(2u2+1)(2u2−1)=(2u2+1)(2u2−1)
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=(2u2+1)(2​u+1)(2​u−1)
=u3(2u2+1)(2​u+1)(2​u−1)
u3(2u2+1)(2​u+1)(2​u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or2u2+1=0or2​u+1=0or2​u−1=0
Solve 2u2+1=0:u=i21​​,u=−i21​​
2u2+1=0
Move 1to the right side
2u2+1=0
Subtract 1 from both sides2u2+1−1=0−1
Simplify2u2=−1
2u2=−1
Divide both sides by 2
2u2=−1
Divide both sides by 222u2​=2−1​
Simplifyu2=−21​
u2=−21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−21​​,u=−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
Simplify −−21​​:−i21​​
−−21​​
Simplify −21​​:i21​​
−21​​
Apply radical rule: −a​=−1​a​−21​​=−1​21​​=−1​21​​
Apply imaginary number rule: −1​=i=i21​​
=−i21​​
u=i21​​,u=−i21​​
Solve 2​u+1=0:u=−22​​
2​u+1=0
Move 1to the right side
2​u+1=0
Subtract 1 from both sides2​u+1−1=0−1
Simplify2​u=−1
2​u=−1
Divide both sides by 2​
2​u=−1
Divide both sides by 2​2​2​u​=2​−1​
Simplify
2​2​u​=2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
Solve 2​u−1=0:u=22​​
2​u−1=0
Move 1to the right side
2​u−1=0
Add 1 to both sides2​u−1+1=0+1
Simplify2​u=1
2​u=1
Divide both sides by 2​
2​u=1
Divide both sides by 2​2​2​u​=2​1​
Simplify
2​2​u​=2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
The solutions areu=0,u=i21​​,u=−i21​​,u=−22​​,u=22​​
Substitute back u=sin(o)sin(o)=0,sin(o)=i21​​,sin(o)=−i21​​,sin(o)=−22​​,sin(o)=22​​
sin(o)=0,sin(o)=i21​​,sin(o)=−i21​​,sin(o)=−22​​,sin(o)=22​​
sin(o)=0:o=2πn,o=π+2πn
sin(o)=0
General solutions for sin(o)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
o=0+2πn,o=π+2πn
o=0+2πn,o=π+2πn
Solve o=0+2πn:o=2πn
o=0+2πn
0+2πn=2πno=2πn
o=2πn,o=π+2πn
sin(o)=i21​​:No Solution
sin(o)=i21​​
NoSolution
sin(o)=−i21​​:No Solution
sin(o)=−i21​​
NoSolution
sin(o)=−22​​:o=45π​+2πn,o=47π​+2πn
sin(o)=−22​​
General solutions for sin(o)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
o=45π​+2πn,o=47π​+2πn
o=45π​+2πn,o=47π​+2πn
sin(o)=22​​:o=4π​+2πn,o=43π​+2πn
sin(o)=22​​
General solutions for sin(o)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
o=4π​+2πn,o=43π​+2πn
o=4π​+2πn,o=43π​+2πn
Combine all the solutionso=2πn,o=π+2πn,o=45π​+2πn,o=47π​+2πn,o=4π​+2πn,o=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)=-48sin^4(x)-6sin^2(x)+1=04sin^2(x)+2cos(x)+a=3cos^5(x)+cos(x)+4cos^2(x)=2sin^2(x)-sin(x)+2cos^2(x)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024