Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(x)+2cos(x)+a=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(x)+2cos(x)+a=3

Solution

x=arccos(−4−1+4a+5​​)+2πn,x=−arccos(−4−1+4a+5​​)+2πn,x=arccos(44a+5​+1​)+2πn,x=−arccos(44a+5​+1​)+2πn
Solution steps
4sin2(x)+2cos(x)+a=3
Subtract 3 from both sides4sin2(x)+2cos(x)+a−3=0
Rewrite using trig identities
−3+a+2cos(x)+4sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−3+a+2cos(x)+4(1−cos2(x))
Simplify −3+a+2cos(x)+4(1−cos2(x)):2cos(x)−4cos2(x)+a+1
−3+a+2cos(x)+4(1−cos2(x))
Expand 4(1−cos2(x)):4−4cos2(x)
4(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=cos2(x)=4⋅1−4cos2(x)
Multiply the numbers: 4⋅1=4=4−4cos2(x)
=−3+a+2cos(x)+4−4cos2(x)
Simplify −3+a+2cos(x)+4−4cos2(x):2cos(x)−4cos2(x)+a+1
−3+a+2cos(x)+4−4cos2(x)
Group like terms=2cos(x)−4cos2(x)+a−3+4
Add/Subtract the numbers: −3+4=1=2cos(x)−4cos2(x)+a+1
=2cos(x)−4cos2(x)+a+1
=2cos(x)−4cos2(x)+a+1
1+a+2cos(x)−4cos2(x)=0
Solve by substitution
1+a+2cos(x)−4cos2(x)=0
Let: cos(x)=u1+a+2u−4u2=0
1+a+2u−4u2=0:u=−4−1+4a+5​​,u=44a+5​+1​
1+a+2u−4u2=0
Write in the standard form ax2+bx+c=0−4u2+2u+1+a=0
Solve with the quadratic formula
−4u2+2u+1+a=0
Quadratic Equation Formula:
For a=−4,b=2,c=1+au1,2​=2(−4)−2±22−4(−4)(1+a)​​
u1,2​=2(−4)−2±22−4(−4)(1+a)​​
Simplify 22−4(−4)(1+a)​:24a+5​
22−4(−4)(1+a)​
Apply rule −(−a)=a=22+4⋅4(1+a)​
Multiply the numbers: 4⋅4=16=22+16(a+1)​
Factor 22+16(1+a):4(4a+5)
22+16(1+a)
Rewrite as=4⋅1+4⋅4(1+a)
Factor out common term 4=4(1+4(1+a))
Expand 4(a+1)+1:4a+5
1+4(1+a)
Expand 4(1+a):4+4a
4(1+a)
Apply the distributive law: a(b+c)=ab+aca=4,b=1,c=a=4⋅1+4a
Multiply the numbers: 4⋅1=4=4+4a
=1+4+4a
Add the numbers: 1+4=5=4a+5
=4(4a+5)
=4(4a+5)​
Apply radical rule: assuming a≥0,b≥0=4​4a+5​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=24a+5​
u1,2​=2(−4)−2±24a+5​​
Separate the solutionsu1​=2(−4)−2+24a+5​​,u2​=2(−4)−2−24a+5​​
u=2(−4)−2+24a+5​​:−4−1+4a+5​​
2(−4)−2+24a+5​​
Remove parentheses: (−a)=−a=−2⋅4−2+24a+5​​
Multiply the numbers: 2⋅4=8=−8−2+24a+5​​
Apply the fraction rule: −ba​=−ba​=−8−2+24a+5​​
Cancel 8−2+24a+5​​:44a+5​−1​
8−2+24a+5​​
Factor −2+24a+5​:2(−1+5+4a​)
−2+24a+5​
Rewrite as=−2⋅1+25+4a​
Factor out common term 2=2(−1+5+4a​)
=82(−1+5+4a​)​
Cancel the common factor: 2=4−1+4a+5​​
=−44a+5​−1​
=−4−1+4a+5​​
u=2(−4)−2−24a+5​​:44a+5​+1​
2(−4)−2−24a+5​​
Remove parentheses: (−a)=−a=−2⋅4−2−24a+5​​
Multiply the numbers: 2⋅4=8=−8−2−24a+5​​
Apply the fraction rule: −ba​=−ba​=−8−2−24a+5​​
Cancel 8−2−24a+5​​:−44a+5​+1​
8−2−24a+5​​
Factor −2−24a+5​:−2(1+5+4a​)
−2−24a+5​
Rewrite as=−2⋅1−25+4a​
Factor out common term 2=−2(1+5+4a​)
=−82(1+5+4a​)​
Cancel the common factor: 2=−44a+5​+1​
=−(−44a+5​+1​)
Apply rule −(−a)=a=44a+5​+1​
The solutions to the quadratic equation are:u=−4−1+4a+5​​,u=44a+5​+1​
Substitute back u=cos(x)cos(x)=−4−1+4a+5​​,cos(x)=44a+5​+1​
cos(x)=−4−1+4a+5​​,cos(x)=44a+5​+1​
cos(x)=−4−1+4a+5​​:x=arccos(−4−1+4a+5​​)+2πn,x=−arccos(−4−1+4a+5​​)+2πn
cos(x)=−4−1+4a+5​​
Apply trig inverse properties
cos(x)=−4−1+4a+5​​
General solutions for cos(x)=−4−1+4a+5​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(−4−1+4a+5​​)+2πn,x=−arccos(−4−1+4a+5​​)+2πn
x=arccos(−4−1+4a+5​​)+2πn,x=−arccos(−4−1+4a+5​​)+2πn
cos(x)=44a+5​+1​:x=arccos(44a+5​+1​)+2πn,x=−arccos(44a+5​+1​)+2πn
cos(x)=44a+5​+1​
Apply trig inverse properties
cos(x)=44a+5​+1​
General solutions for cos(x)=44a+5​+1​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πnx=arccos(44a+5​+1​)+2πn,x=−arccos(44a+5​+1​)+2πn
x=arccos(44a+5​+1​)+2πn,x=−arccos(44a+5​+1​)+2πn
Combine all the solutionsx=arccos(−4−1+4a+5​​)+2πn,x=−arccos(−4−1+4a+5​​)+2πn,x=arccos(44a+5​+1​)+2πn,x=−arccos(44a+5​+1​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^5(x)+cos(x)+4cos^2(x)=2sin^2(x)-sin(x)+2cos^2(x)=1(sin^3(x))/(2+2(sin(x))^2)=1solvefor x,cot^2(x)= 1/32+cos^2(x)=-5sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 4sin^2(x)+2cos(x)+a=3 ?

    The general solution for 4sin^2(x)+2cos(x)+a=3 is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024