Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin^3(x))/(2+2(sin(x))^2)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2+2(sin(x))2sin3(x)​=1

Solution

NoSolutionforx∈R
Solution steps
2+2(sin(x))2sin3(x)​=1
Solve by substitution
2+2(sin(x))2sin3(x)​=1
Let: sin(x)=u2+2u2u3​=1
2+2u2u3​=1:u≈2.35930…
2+2u2u3​=1
Multiply both sides by 2+2u2
2+2u2u3​=1
Multiply both sides by 2+2u22+2u2u3​(2+2u2)=1⋅(2+2u2)
Simplify
2+2u2u3​(2+2u2)=1⋅(2+2u2)
Simplify 2+2u2u3​(2+2u2):u3
2+2u2u3​(2+2u2)
Multiply fractions: a⋅cb​=ca⋅b​=2+2u2u3(2+2u2)​
Cancel the common factor: 2+2u2=u3
Simplify 1⋅(2+2u2):2+2u2
1⋅(2+2u2)
Multiply: 1⋅(2+2u2)=(2+2u2)=(2+2u2)
Remove parentheses: (a)=a=2+2u2
u3=2+2u2
u3=2+2u2
u3=2+2u2
Solve u3=2+2u2:u≈2.35930…
u3=2+2u2
Move 2u2to the left side
u3=2+2u2
Subtract 2u2 from both sidesu3−2u2=2+2u2−2u2
Simplifyu3−2u2=2
u3−2u2=2
Move 2to the left side
u3−2u2=2
Subtract 2 from both sidesu3−2u2−2=2−2
Simplifyu3−2u2−2=0
u3−2u2−2=0
Find one solution for u3−2u2−2=0 using Newton-Raphson:u≈2.35930…
u3−2u2−2=0
Newton-Raphson Approximation Definition
f(u)=u3−2u2−2
Find f′(u):3u2−4u
dud​(u3−2u2−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(2u2)−dud​(2)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(2u2)=4u
dud​(2u2)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplify=4u
dud​(2)=0
dud​(2)
Derivative of a constant: dxd​(a)=0=0
=3u2−4u−0
Simplify=3u2−4u
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.28571…:Δu1​=0.71428…
f(u0​)=(−1)3−2(−1)2−2=−5f′(u0​)=3(−1)2−4(−1)=7u1​=−0.28571…
Δu1​=∣−0.28571…−(−1)∣=0.71428…Δu1​=0.71428…
u2​=1.28991…:Δu2​=1.57563…
f(u1​)=(−0.28571…)3−2(−0.28571…)2−2=−2.18658…f′(u1​)=3(−0.28571…)2−4(−0.28571…)=1.38775…u2​=1.28991…
Δu2​=∣1.28991…−(−0.28571…)∣=1.57563…Δu2​=1.57563…
u3​=−17.64595…:Δu3​=18.93587…
f(u2​)=1.28991…3−2⋅1.28991…2−2=−3.18149…f′(u2​)=3⋅1.28991…2−4⋅1.28991…=−0.16801…u3​=−17.64595…
Δu3​=∣−17.64595…−1.28991…∣=18.93587…Δu3​=18.93587…
u4​=−11.55537…:Δu4​=6.09058…
f(u3​)=(−17.64595…)3−2(−17.64595…)2−2=−6119.35487…f′(u3​)=3(−17.64595…)2−4(−17.64595…)=1004.72330…u4​=−11.55537…
Δu4​=∣−11.55537…−(−17.64595…)∣=6.09058…Δu4​=6.09058…
u5​=−7.49987…:Δu5​=4.05549…
f(u4​)=(−11.55537…)3−2(−11.55537…)2−2=−1812.00239…f′(u4​)=3(−11.55537…)2−4(−11.55537…)=446.80124…u5​=−7.49987…
Δu5​=∣−7.49987…−(−11.55537…)∣=4.05549…Δu5​=4.05549…
u6​=−4.80117…:Δu6​=2.69869…
f(u5​)=(−7.49987…)3−2(−7.49987…)2−2=−536.34930…f′(u5​)=3(−7.49987…)2−4(−7.49987…)=198.74366…u6​=−4.80117…
Δu6​=∣−4.80117…−(−7.49987…)∣=2.69869…Δu6​=2.69869…
u7​=−3.00422…:Δu7​=1.79694…
f(u6​)=(−4.80117…)3−2(−4.80117…)2−2=−158.77552…f′(u6​)=3(−4.80117…)2−4(−4.80117…)=88.35844…u7​=−3.00422…
Δu7​=∣−3.00422…−(−4.80117…)∣=1.79694…Δu7​=1.79694…
u8​=−1.79774…:Δu8​=1.20648…
f(u7​)=(−3.00422…)3−2(−3.00422…)2−2=−47.16492…f′(u7​)=3(−3.00422…)2−4(−3.00422…)=39.09297…u8​=−1.79774…
Δu8​=∣−1.79774…−(−3.00422…)∣=1.20648…Δu8​=1.20648…
u9​=−0.95246…:Δu9​=0.84527…
f(u8​)=(−1.79774…)3−2(−1.79774…)2−2=−14.27385…f′(u8​)=3(−1.79774…)2−4(−1.79774…)=16.88661…u9​=−0.95246…
Δu9​=∣−0.95246…−(−1.79774…)∣=0.84527…Δu9​=0.84527…
u10​=−0.23616…:Δu10​=0.71629…
f(u9​)=(−0.95246…)3−2(−0.95246…)2−2=−4.67845…f′(u9​)=3(−0.95246…)2−4(−0.95246…)=6.53144…u10​=−0.23616…
Δu10​=∣−0.23616…−(−0.95246…)∣=0.71629…Δu10​=0.71629…
u11​=1.67454…:Δu11​=1.91071…
f(u10​)=(−0.23616…)3−2(−0.23616…)2−2=−2.12472…f′(u10​)=3(−0.23616…)2−4(−0.23616…)=1.11200…u11​=1.67454…
Δu11​=∣1.67454…−(−0.23616…)∣=1.91071…Δu11​=1.91071…
u12​=3.37374…:Δu12​=1.69920…
f(u11​)=1.67454…3−2⋅1.67454…2−2=−2.91261…f′(u11​)=3⋅1.67454…2−4⋅1.67454…=1.71410…u12​=3.37374…
Δu12​=∣3.37374…−1.67454…∣=1.69920…Δu12​=1.69920…
u13​=2.71344…:Δu13​=0.66030…
f(u12​)=3.37374…3−2⋅3.37374…2−2=13.63622…f′(u12​)=3⋅3.37374…2−4⋅3.37374…=20.65152…u13​=2.71344…
Δu13​=∣2.71344…−3.37374…∣=0.66030…Δu13​=0.66030…
u14​=2.42389…:Δu14​=0.28954…
f(u13​)=2.71344…3−2⋅2.71344…2−2=3.25295…f′(u13​)=3⋅2.71344…2−4⋅2.71344…=11.23458…u14​=2.42389…
Δu14​=∣2.42389…−2.71344…∣=0.28954…Δu14​=0.28954…
u15​=2.36204…:Δu15​=0.06185…
f(u14​)=2.42389…3−2⋅2.42389…2−2=0.49051…f′(u14​)=3⋅2.42389…2−4⋅2.42389…=7.93025…u15​=2.36204…
Δu15​=∣2.36204…−2.42389…∣=0.06185…Δu15​=0.06185…
u16​=2.35930…:Δu16​=0.00273…
f(u15​)=2.36204…3−2⋅2.36204…2−2=0.01993…f′(u15​)=3⋅2.36204…2−4⋅2.36204…=7.28957…u16​=2.35930…
Δu16​=∣2.35930…−2.36204…∣=0.00273…Δu16​=0.00273…
u17​=2.35930…:Δu17​=5.23398E−6
f(u16​)=2.35930…3−2⋅2.35930…2−2=0.00003…f′(u16​)=3⋅2.35930…2−4⋅2.35930…=7.26178…u17​=2.35930…
Δu17​=∣2.35930…−2.35930…∣=5.23398E−6Δu17​=5.23398E−6
u18​=2.35930…:Δu18​=1.9156E−11
f(u17​)=2.35930…3−2⋅2.35930…2−2=1.39106E−10f′(u17​)=3⋅2.35930…2−4⋅2.35930…=7.26173…u18​=2.35930…
Δu18​=∣2.35930…−2.35930…∣=1.9156E−11Δu18​=1.9156E−11
u≈2.35930…
Apply long division:u−2.35930…u3−2u2−2​=u2+0.35930…u+0.84770…
u2+0.35930…u+0.84770…≈0
Find one solution for u2+0.35930…u+0.84770…=0 using Newton-Raphson:No Solution for u∈R
u2+0.35930…u+0.84770…=0
Newton-Raphson Approximation Definition
f(u)=u2+0.35930…u+0.84770…
Find f′(u):2u+0.35930…
dud​(u2+0.35930…u+0.84770…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)+dud​(0.35930…u)+dud​(0.84770…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(0.35930…u)=0.35930…
dud​(0.35930…u)
Take the constant out: (a⋅f)′=a⋅f′=0.35930…dudu​
Apply the common derivative: dudu​=1=0.35930…⋅1
Simplify=0.35930…
dud​(0.84770…)=0
dud​(0.84770…)
Derivative of a constant: dxd​(a)=0=0
=2u+0.35930…+0
Simplify=2u+0.35930…
Let u0​=−2Compute un+1​ until Δun+1​<0.000001
u1​=−0.86584…:Δu1​=1.13415…
f(u0​)=(−2)2+0.35930…(−2)+0.84770…=4.12909…f′(u0​)=2(−2)+0.35930…=−3.64069…u1​=−0.86584…
Δu1​=∣−0.86584…−(−2)∣=1.13415…Δu1​=1.13415…
u2​=0.07141…:Δu2​=0.93726…
f(u1​)=(−0.86584…)2+0.35930…(−0.86584…)+0.84770…=1.28629…f′(u1​)=2(−0.86584…)+0.35930…=−1.37239…u2​=0.07141…
Δu2​=∣0.07141…−(−0.86584…)∣=0.93726…Δu2​=0.93726…
u3​=−1.67803…:Δu3​=1.74945…
f(u2​)=0.07141…2+0.35930…⋅0.07141…+0.84770…=0.87846…f′(u2​)=2⋅0.07141…+0.35930…=0.50213…u3​=−1.67803…
Δu3​=∣−1.67803…−0.07141…∣=1.74945…Δu3​=1.74945…
u4​=−0.65673…:Δu4​=1.02129…
f(u3​)=(−1.67803…)2+0.35930…(−1.67803…)+0.84770…=3.06057…f′(u3​)=2(−1.67803…)+0.35930…=−2.99676…u4​=−0.65673…
Δu4​=∣−0.65673…−(−1.67803…)∣=1.02129…Δu4​=1.02129…
u5​=0.43640…:Δu5​=1.09314…
f(u4​)=(−0.65673…)2+0.35930…(−0.65673…)+0.84770…=1.04304…f′(u4​)=2(−0.65673…)+0.35930…=−0.95417…u5​=0.43640…
Δu5​=∣0.43640…−(−0.65673…)∣=1.09314…Δu5​=1.09314…
u6​=−0.53344…:Δu6​=0.96984…
f(u5​)=0.43640…2+0.35930…⋅0.43640…+0.84770…=1.19495…f′(u5​)=2⋅0.43640…+0.35930…=1.23210…u6​=−0.53344…
Δu6​=∣−0.53344…−0.43640…∣=0.96984…Δu6​=0.96984…
u7​=0.79587…:Δu7​=1.32931…
f(u6​)=(−0.53344…)2+0.35930…(−0.53344…)+0.84770…=0.94060…f′(u6​)=2(−0.53344…)+0.35930…=−0.70758…u7​=0.79587…
Δu7​=∣0.79587…−(−0.53344…)∣=1.32931…Δu7​=1.32931…
u8​=−0.10983…:Δu8​=0.90570…
f(u7​)=0.79587…2+0.35930…⋅0.79587…+0.84770…=1.76707…f′(u7​)=2⋅0.79587…+0.35930…=1.95104…u8​=−0.10983…
Δu8​=∣−0.10983…−0.79587…∣=0.90570…Δu8​=0.90570…
u9​=−5.98468…:Δu9​=5.87485…
f(u8​)=(−0.10983…)2+0.35930…(−0.10983…)+0.84770…=0.82030…f′(u8​)=2(−0.10983…)+0.35930…=0.13963…u9​=−5.98468…
Δu9​=∣−5.98468…−(−0.10983…)∣=5.87485…Δu9​=5.87485…
Cannot find solution
The solution isu≈2.35930…
u≈2.35930…
Substitute back u=sin(x)sin(x)≈2.35930…
sin(x)≈2.35930…
sin(x)=2.35930…:No Solution
sin(x)=2.35930…
−1≤sin(x)≤1NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,cot^2(x)= 1/32+cos^2(x)=-5sin(x)tan^5(x)tan^2(x)=1(sin^2(a)+1)/((1+tan^2(a)))=1tan(a)= 5/9 ,b=6

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin^3(x))/(2+2(sin(x))^2)=1 ?

    The general solution for (sin^3(x))/(2+2(sin(x))^2)=1 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024