Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin^{22}(a))/(sin^2(a))=4-4sin^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(a)sin22(a)​=4−4sin2(a)

Solution

a=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn
+1
Degrees
a=72.18663…∘+360∘n,a=107.81336…∘+360∘n,a=−72.18663…∘+360∘n,a=252.18663…∘+360∘n
Solution steps
sin2(a)sin22(a)​=4−4sin2(a)
Solve by substitution
sin2(a)sin22(a)​=4−4sin2(a)
Let: sin(a)=uu2u22​=4−4u2
u2u22​=4−4u2:u=0.90641…​,u=−0.90641…​
u2u22​=4−4u2
Simplify u2u22​:u20
u2u22​
Apply exponent rule: xbxa​=xa−bu2u22​=u22−2=u22−2
Subtract the numbers: 22−2=20=u20
u20=4−4u2
Solve u20=4−4u2:u=0.90641…​,u=−0.90641…​
u20=4−4u2
Move 4u2to the left side
u20=4−4u2
Add 4u2 to both sidesu20+4u2=4−4u2+4u2
Simplifyu20+4u2=4
u20+4u2=4
Move 4to the left side
u20+4u2=4
Subtract 4 from both sidesu20+4u2−4=4−4
Simplifyu20+4u2−4=0
u20+4u2−4=0
Rewrite the equation with v=u2 and v10=u20v10+4v−4=0
Solve v10+4v−4=0:v≈0.90641…,v≈−1.24548…
v10+4v−4=0
Find one solution for v10+4v−4=0 using Newton-Raphson:v≈0.90641…
v10+4v−4=0
Newton-Raphson Approximation Definition
f(v)=v10+4v−4
Find f′(v):10v9+4
dvd​(v10+4v−4)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v10)+dvd​(4v)−dvd​(4)
dvd​(v10)=10v9
dvd​(v10)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10v10−1
Simplify=10v9
dvd​(4v)=4
dvd​(4v)
Take the constant out: (a⋅f)′=a⋅f′=4dvdv​
Apply the common derivative: dvdv​=1=4⋅1
Simplify=4
dvd​(4)=0
dvd​(4)
Derivative of a constant: dxd​(a)=0=0
=10v9+4−0
Simplify=10v9+4
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.92857…:Δv1​=0.07142…
f(v0​)=110+4⋅1−4=1f′(v0​)=10⋅19+4=14v1​=0.92857…
Δv1​=∣0.92857…−1∣=0.07142…Δv1​=0.07142…
v2​=0.90766…:Δv2​=0.02090…
f(v1​)=0.92857…10+4⋅0.92857…−4=0.19088…f′(v1​)=10⋅0.92857…9+4=9.13260…v2​=0.90766…
Δv2​=∣0.90766…−0.92857…∣=0.02090…Δv2​=0.02090…
v3​=0.90641…:Δv3​=0.00125…
f(v2​)=0.90766…10+4⋅0.90766…−4=0.01023…f′(v2​)=10⋅0.90766…9+4=8.18168…v3​=0.90641…
Δv3​=∣0.90641…−0.90766…∣=0.00125…Δv3​=0.00125…
v4​=0.90641…:Δv4​=3.97918E−6
f(v3​)=0.90641…10+4⋅0.90641…−4=0.00003…f′(v3​)=10⋅0.90641…9+4=8.13008…v4​=0.90641…
Δv4​=∣0.90641…−0.90641…∣=3.97918E−6Δv4​=3.97918E−6
v5​=0.90641…:Δv5​=3.99335E−11
f(v4​)=0.90641…10+4⋅0.90641…−4=3.24656E−10f′(v4​)=10⋅0.90641…9+4=8.12992…v5​=0.90641…
Δv5​=∣0.90641…−0.90641…∣=3.99335E−11Δv5​=3.99335E−11
v≈0.90641…
Apply long division:v−0.90641…v10+4v−4​=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…≈0
Find one solution for v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0 using Newton-Raphson:v≈−1.24548…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0
Newton-Raphson Approximation Definition
f(v)=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
Find f′(v):9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
dvd​(v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v9)+dvd​(0.90641…v8)+dvd​(0.82158…v7)+dvd​(0.74469…v6)+dvd​(0.67500…v5)+dvd​(0.61183…v4)+dvd​(0.55457…v3)+dvd​(0.50267…v2)+dvd​(0.45563…v)+dvd​(4.41299…)
dvd​(v9)=9v8
dvd​(v9)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9v9−1
Simplify=9v8
dvd​(0.90641…v8)=7.25131…v7
dvd​(0.90641…v8)
Take the constant out: (a⋅f)′=a⋅f′=0.90641…dvd​(v8)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.90641…⋅8v8−1
Simplify=7.25131…v7
dvd​(0.82158…v7)=5.75111…v6
dvd​(0.82158…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.82158…dvd​(v7)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.82158…⋅7v7−1
Simplify=5.75111…v6
dvd​(0.74469…v6)=4.46819…v5
dvd​(0.74469…v6)
Take the constant out: (a⋅f)′=a⋅f′=0.74469…dvd​(v6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.74469…⋅6v6−1
Simplify=4.46819…v5
dvd​(0.67500…v5)=3.37502…v4
dvd​(0.67500…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.67500…dvd​(v5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.67500…⋅5v5−1
Simplify=3.37502…v4
dvd​(0.61183…v4)=2.44733…v3
dvd​(0.61183…v4)
Take the constant out: (a⋅f)′=a⋅f′=0.61183…dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.61183…⋅4v4−1
Simplify=2.44733…v3
dvd​(0.55457…v3)=1.66372…v2
dvd​(0.55457…v3)
Take the constant out: (a⋅f)′=a⋅f′=0.55457…dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.55457…⋅3v3−1
Simplify=1.66372…v2
dvd​(0.50267…v2)=1.00535…v
dvd​(0.50267…v2)
Take the constant out: (a⋅f)′=a⋅f′=0.50267…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.50267…⋅2v2−1
Simplify=1.00535…v
dvd​(0.45563…v)=0.45563…
dvd​(0.45563…v)
Take the constant out: (a⋅f)′=a⋅f′=0.45563…dvdv​
Apply the common derivative: dvdv​=1=0.45563…⋅1
Simplify=0.45563…
dvd​(4.41299…)=0
dvd​(4.41299…)
Derivative of a constant: dxd​(a)=0=0
=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…+0
Simplify=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
Let v0​=−5Compute vn+1​ until Δvn+1​<0.000001
v1​=−4.45375…:Δv1​=0.54624…
f(v0​)=(−5)9+0.90641…(−5)8+0.82158…(−5)7+0.74469…(−5)6+0.67500…(−5)5+0.61183…(−5)4+0.55457…(−5)3+0.50267…(−5)2+0.45563…(−5)+4.41299…=−1653389.03665…f′(v0​)=9(−5)8+7.25131…(−5)7+5.75111…(−5)6+4.46819…(−5)5+3.37502…(−5)4+2.44733…(−5)3+1.66372…(−5)2+1.00535…(−5)+0.45563…=3026854.43549…v1​=−4.45375…
Δv1​=∣−4.45375…−(−5)∣=0.54624…Δv1​=0.54624…
v2​=−3.96802…:Δv2​=0.48573…
f(v1​)=(−4.45375…)9+0.90641…(−4.45375…)8+0.82158…(−4.45375…)7+0.74469…(−4.45375…)6+0.67500…(−4.45375…)5+0.61183…(−4.45375…)4+0.55457…(−4.45375…)3+0.50267…(−4.45375…)2+0.45563…(−4.45375…)+4.41299…=−572909.56059…f′(v1​)=9(−4.45375…)8+7.25131…(−4.45375…)7+5.75111…(−4.45375…)6+4.46819…(−4.45375…)5+3.37502…(−4.45375…)4+2.44733…(−4.45375…)3+1.66372…(−4.45375…)2+1.00535…(−4.45375…)+0.45563…=1179476.08686…v2​=−3.96802…
Δv2​=∣−3.96802…−(−4.45375…)∣=0.48573…Δv2​=0.48573…
v3​=−3.53606…:Δv3​=0.43195…
f(v2​)=(−3.96802…)9+0.90641…(−3.96802…)8+0.82158…(−3.96802…)7+0.74469…(−3.96802…)6+0.67500…(−3.96802…)5+0.61183…(−3.96802…)4+0.55457…(−3.96802…)3+0.50267…(−3.96802…)2+0.45563…(−3.96802…)+4.41299…=−198524.05883…f′(v2​)=9(−3.96802…)8+7.25131…(−3.96802…)7+5.75111…(−3.96802…)6+4.46819…(−3.96802…)5+3.37502…(−3.96802…)4+2.44733…(−3.96802…)3+1.66372…(−3.96802…)2+1.00535…(−3.96802…)+0.45563…=459591.06090…v3​=−3.53606…
Δv3​=∣−3.53606…−(−3.96802…)∣=0.43195…Δv3​=0.43195…
v4​=−3.15190…:Δv4​=0.38416…
f(v3​)=(−3.53606…)9+0.90641…(−3.53606…)8+0.82158…(−3.53606…)7+0.74469…(−3.53606…)6+0.67500…(−3.53606…)5+0.61183…(−3.53606…)4+0.55457…(−3.53606…)3+0.50267…(−3.53606…)2+0.45563…(−3.53606…)+4.41299…=−68794.93716…f′(v3​)=9(−3.53606…)8+7.25131…(−3.53606…)7+5.75111…(−3.53606…)6+4.46819…(−3.53606…)5+3.37502…(−3.53606…)4+2.44733…(−3.53606…)3+1.66372…(−3.53606…)2+1.00535…(−3.53606…)+0.45563…=179076.94254…v4​=−3.15190…
Δv4​=∣−3.15190…−(−3.53606…)∣=0.38416…Δv4​=0.38416…
v5​=−2.81023…:Δv5​=0.34167…
f(v4​)=(−3.15190…)9+0.90641…(−3.15190…)8+0.82158…(−3.15190…)7+0.74469…(−3.15190…)6+0.67500…(−3.15190…)5+0.61183…(−3.15190…)4+0.55457…(−3.15190…)3+0.50267…(−3.15190…)2+0.45563…(−3.15190…)+4.41299…=−23840.26765…f′(v4​)=9(−3.15190…)8+7.25131…(−3.15190…)7+5.75111…(−3.15190…)6+4.46819…(−3.15190…)5+3.37502…(−3.15190…)4+2.44733…(−3.15190…)3+1.66372…(−3.15190…)2+1.00535…(−3.15190…)+0.45563…=69775.21311…v5​=−2.81023…
Δv5​=∣−2.81023…−(−3.15190…)∣=0.34167…Δv5​=0.34167…
v6​=−2.50637…:Δv6​=0.30385…
f(v5​)=(−2.81023…)9+0.90641…(−2.81023…)8+0.82158…(−2.81023…)7+0.74469…(−2.81023…)6+0.67500…(−2.81023…)5+0.61183…(−2.81023…)4+0.55457…(−2.81023…)3+0.50267…(−2.81023…)2+0.45563…(−2.81023…)+4.41299…=−8261.45550…f′(v5​)=9(−2.81023…)8+7.25131…(−2.81023…)7+5.75111…(−2.81023…)6+4.46819…(−2.81023…)5+3.37502…(−2.81023…)4+2.44733…(−2.81023…)3+1.66372…(−2.81023…)2+1.00535…(−2.81023…)+0.45563…=27188.45003…v6​=−2.50637…
Δv6​=∣−2.50637…−(−2.81023…)∣=0.30385…Δv6​=0.30385…
v7​=−2.23625…:Δv7​=0.27011…
f(v6​)=(−2.50637…)9+0.90641…(−2.50637…)8+0.82158…(−2.50637…)7+0.74469…(−2.50637…)6+0.67500…(−2.50637…)5+0.61183…(−2.50637…)4+0.55457…(−2.50637…)3+0.50267…(−2.50637…)2+0.45563…(−2.50637…)+4.41299…=−2862.37457…f′(v6​)=9(−2.50637…)8+7.25131…(−2.50637…)7+5.75111…(−2.50637…)6+4.46819…(−2.50637…)5+3.37502…(−2.50637…)4+2.44733…(−2.50637…)3+1.66372…(−2.50637…)2+1.00535…(−2.50637…)+0.45563…=10596.88514…v7​=−2.23625…
Δv7​=∣−2.23625…−(−2.50637…)∣=0.27011…Δv7​=0.27011…
v8​=−1.99650…:Δv8​=0.23975…
f(v7​)=(−2.23625…)9+0.90641…(−2.23625…)8+0.82158…(−2.23625…)7+0.74469…(−2.23625…)6+0.67500…(−2.23625…)5+0.61183…(−2.23625…)4+0.55457…(−2.23625…)3+0.50267…(−2.23625…)2+0.45563…(−2.23625…)+4.41299…=−991.10859…f′(v7​)=9(−2.23625…)8+7.25131…(−2.23625…)7+5.75111…(−2.23625…)6+4.46819…(−2.23625…)5+3.37502…(−2.23625…)4+2.44733…(−2.23625…)3+1.66372…(−2.23625…)2+1.00535…(−2.23625…)+0.45563…=4133.76874…v8​=−1.99650…
Δv8​=∣−1.99650…−(−2.23625…)∣=0.23975…Δv8​=0.23975…
v9​=−1.78466…:Δv9​=0.21183…
f(v8​)=(−1.99650…)9+0.90641…(−1.99650…)8+0.82158…(−1.99650…)7+0.74469…(−1.99650…)6+0.67500…(−1.99650…)5+0.61183…(−1.99650…)4+0.55457…(−1.99650…)3+0.50267…(−1.99650…)2+0.45563…(−1.99650…)+4.41299…=−342.49576…f′(v8​)=9(−1.99650…)8+7.25131…(−1.99650…)7+5.75111…(−1.99650…)6+4.46819…(−1.99650…)5+3.37502…(−1.99650…)4+2.44733…(−1.99650…)3+1.66372…(−1.99650…)2+1.00535…(−1.99650…)+0.45563…=1616.80028…v9​=−1.78466…
Δv9​=∣−1.78466…−(−1.99650…)∣=0.21183…Δv9​=0.21183…
v10​=−1.60003…:Δv10​=0.18463…
f(v9​)=(−1.78466…)9+0.90641…(−1.78466…)8+0.82158…(−1.78466…)7+0.74469…(−1.78466…)6+0.67500…(−1.78466…)5+0.61183…(−1.78466…)4+0.55457…(−1.78466…)3+0.50267…(−1.78466…)2+0.45563…(−1.78466…)+4.41299…=−117.65885…f′(v9​)=9(−1.78466…)8+7.25131…(−1.78466…)7+5.75111…(−1.78466…)6+4.46819…(−1.78466…)5+3.37502…(−1.78466…)4+2.44733…(−1.78466…)3+1.66372…(−1.78466…)2+1.00535…(−1.78466…)+0.45563…=637.26147…v10​=−1.60003…
Δv10​=∣−1.60003…−(−1.78466…)∣=0.18463…Δv10​=0.18463…
v11​=−1.44531…:Δv11​=0.15471…
f(v10​)=(−1.60003…)9+0.90641…(−1.60003…)8+0.82158…(−1.60003…)7+0.74469…(−1.60003…)6+0.67500…(−1.60003…)5+0.61183…(−1.60003…)4+0.55457…(−1.60003…)3+0.50267…(−1.60003…)2+0.45563…(−1.60003…)+4.41299…=−39.72697…f′(v10​)=9(−1.60003…)8+7.25131…(−1.60003…)7+5.75111…(−1.60003…)6+4.46819…(−1.60003…)5+3.37502…(−1.60003…)4+2.44733…(−1.60003…)3+1.66372…(−1.60003…)2+1.00535…(−1.60003…)+0.45563…=256.77560…v11​=−1.44531…
Δv11​=∣−1.44531…−(−1.60003…)∣=0.15471…Δv11​=0.15471…
v12​=−1.32926…:Δv12​=0.11605…
f(v11​)=(−1.44531…)9+0.90641…(−1.44531…)8+0.82158…(−1.44531…)7+0.74469…(−1.44531…)6+0.67500…(−1.44531…)5+0.61183…(−1.44531…)4+0.55457…(−1.44531…)3+0.50267…(−1.44531…)2+0.45563…(−1.44531…)+4.41299…=−12.75482…f′(v11​)=9(−1.44531…)8+7.25131…(−1.44531…)7+5.75111…(−1.44531…)6+4.46819…(−1.44531…)5+3.37502…(−1.44531…)4+2.44733…(−1.44531…)3+1.66372…(−1.44531…)2+1.00535…(−1.44531…)+0.45563…=109.90167…v12​=−1.32926…
Δv12​=∣−1.32926…−(−1.44531…)∣=0.11605…Δv12​=0.11605…
v13​=−1.26447…:Δv13​=0.06478…
f(v12​)=(−1.32926…)9+0.90641…(−1.32926…)8+0.82158…(−1.32926…)7+0.74469…(−1.32926…)6+0.67500…(−1.32926…)5+0.61183…(−1.32926…)4+0.55457…(−1.32926…)3+0.50267…(−1.32926…)2+0.45563…(−1.32926…)+4.41299…=−3.53618…f′(v12​)=9(−1.32926…)8+7.25131…(−1.32926…)7+5.75111…(−1.32926…)6+4.46819…(−1.32926…)5+3.37502…(−1.32926…)4+2.44733…(−1.32926…)3+1.66372…(−1.32926…)2+1.00535…(−1.32926…)+0.45563…=54.58328…v13​=−1.26447…
Δv13​=∣−1.26447…−(−1.32926…)∣=0.06478…Δv13​=0.06478…
v14​=−1.24663…:Δv14​=0.01784…
f(v13​)=(−1.26447…)9+0.90641…(−1.26447…)8+0.82158…(−1.26447…)7+0.74469…(−1.26447…)6+0.67500…(−1.26447…)5+0.61183…(−1.26447…)4+0.55457…(−1.26447…)3+0.50267…(−1.26447…)2+0.45563…(−1.26447…)+4.41299…=−0.64115…f′(v13​)=9(−1.26447…)8+7.25131…(−1.26447…)7+5.75111…(−1.26447…)6+4.46819…(−1.26447…)5+3.37502…(−1.26447…)4+2.44733…(−1.26447…)3+1.66372…(−1.26447…)2+1.00535…(−1.26447…)+0.45563…=35.92993…v14​=−1.24663…
Δv14​=∣−1.24663…−(−1.26447…)∣=0.01784…Δv14​=0.01784…
v15​=−1.24548…:Δv15​=0.00114…
f(v14​)=(−1.24663…)9+0.90641…(−1.24663…)8+0.82158…(−1.24663…)7+0.74469…(−1.24663…)6+0.67500…(−1.24663…)5+0.61183…(−1.24663…)4+0.55457…(−1.24663…)3+0.50267…(−1.24663…)2+0.45563…(−1.24663…)+4.41299…=−0.03658…f′(v14​)=9(−1.24663…)8+7.25131…(−1.24663…)7+5.75111…(−1.24663…)6+4.46819…(−1.24663…)5+3.37502…(−1.24663…)4+2.44733…(−1.24663…)3+1.66372…(−1.24663…)2+1.00535…(−1.24663…)+0.45563…=31.89979…v15​=−1.24548…
Δv15​=∣−1.24548…−(−1.24663…)∣=0.00114…Δv15​=0.00114…
v16​=−1.24548…:Δv16​=4.44027E−6
f(v15​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−0.00014…f′(v15​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65496…v16​=−1.24548…
Δv16​=∣−1.24548…−(−1.24548…)∣=4.44027E−6Δv16​=4.44027E−6
v17​=−1.24548…:Δv17​=6.62571E−11
f(v16​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−2.0973E−9f′(v16​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65401…v17​=−1.24548…
Δv17​=∣−1.24548…−(−1.24548…)∣=6.62571E−11Δv17​=6.62571E−11
v≈−1.24548…
Apply long division:v+1.24548…v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…​=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…≈0
Find one solution for v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0 using Newton-Raphson:No Solution for v∈R
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0
Newton-Raphson Approximation Definition
f(v)=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
Find f′(v):8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
dvd​(v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v8)−dvd​(0.33906…v7)+dvd​(1.24388…v6)−dvd​(0.80453…v5)+dvd​(1.67704…v4)−dvd​(1.47688…v3)+dvd​(2.39401…v2)−dvd​(2.47902…v)+dvd​(3.54320…)
dvd​(v8)=8v7
dvd​(v8)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8v8−1
Simplify=8v7
dvd​(0.33906…v7)=2.37346…v6
dvd​(0.33906…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.33906…dvd​(v7)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.33906…⋅7v7−1
Simplify=2.37346…v6
dvd​(1.24388…v6)=7.46332…v5
dvd​(1.24388…v6)
Take the constant out: (a⋅f)′=a⋅f′=1.24388…dvd​(v6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.24388…⋅6v6−1
Simplify=7.46332…v5
dvd​(0.80453…v5)=4.02269…v4
dvd​(0.80453…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.80453…dvd​(v5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.80453…⋅5v5−1
Simplify=4.02269…v4
dvd​(1.67704…v4)=6.70817…v3
dvd​(1.67704…v4)
Take the constant out: (a⋅f)′=a⋅f′=1.67704…dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.67704…⋅4v4−1
Simplify=6.70817…v3
dvd​(1.47688…v3)=4.43066…v2
dvd​(1.47688…v3)
Take the constant out: (a⋅f)′=a⋅f′=1.47688…dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.47688…⋅3v3−1
Simplify=4.43066…v2
dvd​(2.39401…v2)=4.78802…v
dvd​(2.39401…v2)
Take the constant out: (a⋅f)′=a⋅f′=2.39401…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2.39401…⋅2v2−1
Simplify=4.78802…v
dvd​(2.47902…v)=2.47902…
dvd​(2.47902…v)
Take the constant out: (a⋅f)′=a⋅f′=2.47902…dvdv​
Apply the common derivative: dvdv​=1=2.47902…⋅1
Simplify=2.47902…
dvd​(3.54320…)=0
dvd​(3.54320…)
Derivative of a constant: dxd​(a)=0=0
=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…+0
Simplify=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.65147…:Δv1​=0.34852…
f(v0​)=18−0.33906…⋅17+1.24388…⋅16−0.80453…⋅15+1.67704…⋅14−1.47688…⋅13+2.39401…⋅12−2.47902…⋅1+3.54320…=4.75863…f′(v0​)=8⋅17−2.37346…⋅16+7.46332…⋅15−4.02269…⋅14+6.70817…⋅13−4.43066…⋅12+4.78802…⋅1−2.47902…=13.65367…v1​=0.65147…
Δv1​=∣0.65147…−1∣=0.34852…Δv1​=0.34852…
v2​=−2.25263…:Δv2​=2.90411…
f(v1​)=0.65147…8−0.33906…⋅0.65147…7+1.24388…⋅0.65147…6−0.80453…⋅0.65147…5+1.67704…⋅0.65147…4−1.47688…⋅0.65147…3+2.39401…⋅0.65147…2−2.47902…⋅0.65147…+3.54320…=2.85422…f′(v1​)=8⋅0.65147…7−2.37346…⋅0.65147…6+7.46332…⋅0.65147…5−4.02269…⋅0.65147…4+6.70817…⋅0.65147…3−4.43066…⋅0.65147…2+4.78802…⋅0.65147…−2.47902…=0.98282…v2​=−2.25263…
Δv2​=∣−2.25263…−0.65147…∣=2.90411…Δv2​=2.90411…
v3​=−1.93475…:Δv3​=0.31788…
f(v2​)=(−2.25263…)8−0.33906…(−2.25263…)7+1.24388…(−2.25263…)6−0.80453…(−2.25263…)5+1.67704…(−2.25263…)4−1.47688…(−2.25263…)3+2.39401…(−2.25263…)2−2.47902…(−2.25263…)+3.54320…=1053.34912…f′(v2​)=8(−2.25263…)7−2.37346…(−2.25263…)6+7.46332…(−2.25263…)5−4.02269…(−2.25263…)4+6.70817…(−2.25263…)3−4.43066…(−2.25263…)2+4.78802…(−2.25263…)−2.47902…=−3313.66679…v3​=−1.93475…
Δv3​=∣−1.93475…−(−2.25263…)∣=0.31788…Δv3​=0.31788…
v4​=−1.64441…:Δv4​=0.29034…
f(v3​)=(−1.93475…)8−0.33906…(−1.93475…)7+1.24388…(−1.93475…)6−0.80453…(−1.93475…)5+1.67704…(−1.93475…)4−1.47688…(−1.93475…)3+2.39401…(−1.93475…)2−2.47902…(−1.93475…)+3.54320…=369.29768…f′(v3​)=8(−1.93475…)7−2.37346…(−1.93475…)6+7.46332…(−1.93475…)5−4.02269…(−1.93475…)4+6.70817…(−1.93475…)3−4.43066…(−1.93475…)2+4.78802…(−1.93475…)−2.47902…=−1271.93873…v4​=−1.64441…
Δv4​=∣−1.64441…−(−1.93475…)∣=0.29034…Δv4​=0.29034…
v5​=−1.36913…:Δv5​=0.27528…
f(v4​)=(−1.64441…)8−0.33906…(−1.64441…)7+1.24388…(−1.64441…)6−0.80453…(−1.64441…)5+1.67704…(−1.64441…)4−1.47688…(−1.64441…)3+2.39401…(−1.64441…)2−2.47902…(−1.64441…)+3.54320…=131.68340…f′(v4​)=8(−1.64441…)7−2.37346…(−1.64441…)6+7.46332…(−1.64441…)5−4.02269…(−1.64441…)4+6.70817…(−1.64441…)3−4.43066…(−1.64441…)2+4.78802…(−1.64441…)−2.47902…=−478.36033…v5​=−1.36913…
Δv5​=∣−1.36913…−(−1.64441…)∣=0.27528…Δv5​=0.27528…
v6​=−1.08732…:Δv6​=0.28180…
f(v5​)=(−1.36913…)8−0.33906…(−1.36913…)7+1.24388…(−1.36913…)6−0.80453…(−1.36913…)5+1.67704…(−1.36913…)4−1.47688…(−1.36913…)3+2.39401…(−1.36913…)2−2.47902…(−1.36913…)+3.54320…=48.57656…f′(v5​)=8(−1.36913…)7−2.37346…(−1.36913…)6+7.46332…(−1.36913…)5−4.02269…(−1.36913…)4+6.70817…(−1.36913…)3−4.43066…(−1.36913…)2+4.78802…(−1.36913…)−2.47902…=−172.37459…v6​=−1.08732…
Δv6​=∣−1.08732…−(−1.36913…)∣=0.28180…Δv6​=0.28180…
v7​=−0.75017…:Δv7​=0.33714…
f(v6​)=(−1.08732…)8−0.33906…(−1.08732…)7+1.24388…(−1.08732…)6−0.80453…(−1.08732…)5+1.67704…(−1.08732…)4−1.47688…(−1.08732…)3+2.39401…(−1.08732…)2−2.47902…(−1.08732…)+3.54320…=19.15306…f′(v6​)=8(−1.08732…)7−2.37346…(−1.08732…)6+7.46332…(−1.08732…)5−4.02269…(−1.08732…)4+6.70817…(−1.08732…)3−4.43066…(−1.08732…)2+4.78802…(−1.08732…)−2.47902…=−56.80952…v7​=−0.75017…
Δv7​=∣−0.75017…−(−1.08732…)∣=0.33714…Δv7​=0.33714…
v8​=−0.21910…:Δv8​=0.53107…
f(v7​)=(−0.75017…)8−0.33906…(−0.75017…)7+1.24388…(−0.75017…)6−0.80453…(−0.75017…)5+1.67704…(−0.75017…)4−1.47688…(−0.75017…)3+2.39401…(−0.75017…)2−2.47902…(−0.75017…)+3.54320…=8.46330…f′(v7​)=8(−0.75017…)7−2.37346…(−0.75017…)6+7.46332…(−0.75017…)5−4.02269…(−0.75017…)4+6.70817…(−0.75017…)3−4.43066…(−0.75017…)2+4.78802…(−0.75017…)−2.47902…=−15.93620…v8​=−0.21910…
Δv8​=∣−0.21910…−(−0.75017…)∣=0.53107…Δv8​=0.53107…
Cannot find solution
The solutions arev≈0.90641…,v≈−1.24548…
v≈0.90641…,v≈−1.24548…
Substitute back v=u2,solve for u
Solve u2=0.90641…:u=0.90641…​,u=−0.90641…​
u2=0.90641…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.90641…​,u=−0.90641…​
Solve u2=−1.24548…:No Solution for u∈R
u2=−1.24548…
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=0.90641…​,u=−0.90641…​
u=0.90641…​,u=−0.90641…​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u2u22​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=0.90641…​,u=−0.90641…​
Substitute back u=sin(a)sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​:a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=0.90641…​
Apply trig inverse properties
sin(a)=0.90641…​
General solutions for sin(a)=0.90641…​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​:a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​
Apply trig inverse properties
sin(a)=−0.90641…​
General solutions for sin(a)=−0.90641…​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Combine all the solutionsa=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn,a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Show solutions in decimal forma=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan^3(x)=2sin^3(x)=3sin(x)cos^4(x)+2sin^2(x)+6cos^2(x)+5=01+sin(2a)=sin^2(a)((cos^3(a)))/((2cos^2(a)-1))=cos(a)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024