Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^4(x)+2sin^2(x)+6cos^2(x)+5=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos4(x)+2sin2(x)+6cos2(x)+5=0

Solution

NoSolutionforx∈R
Solution steps
cos4(x)+2sin2(x)+6cos2(x)+5=0
Rewrite using trig identities
5+cos4(x)+2sin2(x)+6cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=5+cos4(x)+2(1−cos2(x))+6cos2(x)
Simplify 5+cos4(x)+2(1−cos2(x))+6cos2(x):cos4(x)+4cos2(x)+7
5+cos4(x)+2(1−cos2(x))+6cos2(x)
Expand 2(1−cos2(x)):2−2cos2(x)
2(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=cos2(x)=2⋅1−2cos2(x)
Multiply the numbers: 2⋅1=2=2−2cos2(x)
=5+cos4(x)+2−2cos2(x)+6cos2(x)
Simplify 5+cos4(x)+2−2cos2(x)+6cos2(x):cos4(x)+4cos2(x)+7
5+cos4(x)+2−2cos2(x)+6cos2(x)
Add similar elements: −2cos2(x)+6cos2(x)=4cos2(x)=5+cos4(x)+2+4cos2(x)
Group like terms=cos4(x)+4cos2(x)+5+2
Add the numbers: 5+2=7=cos4(x)+4cos2(x)+7
=cos4(x)+4cos2(x)+7
=cos4(x)+4cos2(x)+7
7+cos4(x)+4cos2(x)=0
Solve by substitution
7+cos4(x)+4cos2(x)=0
Let: cos(x)=u7+u4+4u2=0
7+u4+4u2=0:u=2​2+7​​3​​+22+7​​​i,u=−2​2+7​​3​​−22+7​​​i,u=−2​2+7​​3​​+22+7​​​i,u=2​2+7​​3​​−22+7​​​i
7+u4+4u2=0
Write in the standard form an​xn+…+a1​x+a0​=0u4+4u2+7=0
Rewrite the equation with a=u2 and a2=u4a2+4a+7=0
Solve a2+4a+7=0:a=−2+3​i,a=−2−3​i
a2+4a+7=0
Solve with the quadratic formula
a2+4a+7=0
Quadratic Equation Formula:
For a=1,b=4,c=7a1,2​=2⋅1−4±42−4⋅1⋅7​​
a1,2​=2⋅1−4±42−4⋅1⋅7​​
Simplify 42−4⋅1⋅7​:23​i
42−4⋅1⋅7​
Multiply the numbers: 4⋅1⋅7=28=42−28​
Apply imaginary number rule: −a​=ia​=i28−42​
−42+28​=23​
−42+28​
42=16=−16+28​
Add/Subtract the numbers: −16+28=12=12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: =3​22​
Apply radical rule: 22​=2=23​
=23​i
a1,2​=2⋅1−4±23​i​
Separate the solutionsa1​=2⋅1−4+23​i​,a2​=2⋅1−4−23​i​
a=2⋅1−4+23​i​:−2+3​i
2⋅1−4+23​i​
Multiply the numbers: 2⋅1=2=2−4+23​i​
Factor −4+23​i:2(−2+3​i)
−4+23​i
Rewrite as=−2⋅2+23​i
Factor out common term 2=2(−2+3​i)
=22(−2+3​i)​
Divide the numbers: 22​=1=−2+3​i
a=2⋅1−4−23​i​:−2−3​i
2⋅1−4−23​i​
Multiply the numbers: 2⋅1=2=2−4−23​i​
Factor −4−23​i:−2(2+3​i)
−4−23​i
Rewrite as=−2⋅2−23​i
Factor out common term 2=−2(2+3​i)
=−22(2+3​i)​
Divide the numbers: 22​=1=−(2+3​i)
Negate −(2+3​i)=−2−3​i=−2−3​i
The solutions to the quadratic equation are:a=−2+3​i,a=−2−3​i
a=−2+3​i,a=−2−3​i
Substitute back a=u2,solve for u
Solve u2=−2+3​i:u=2​2+7​​3​​+22+7​​​i,u=−2​2+7​​3​​−22+7​​​i
u2=−2+3​i
Substitute u=a+bi(a+bi)2=−2+3​i
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=−2+3​i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=−22ab=3​​]
[a2−b2=−22ab=3​​]:​a=2​2+7​​3​​,a=−2​2+7​​3​​,​b=22+7​​​b=−22+7​​​​​
[a2−b2=−22ab=3​​]
Isolate afor 2ab=3​:a=2b3​​
2ab=3​
Divide both sides by 2b
2ab=3​
Divide both sides by 2b2b2ab​=2b3​​
Simplifya=2b3​​
a=2b3​​
Plug the solutions a=2b3​​ into a2−b2=−2
For a2−b2=−2, subsitute a with 2b3​​:b=22+7​​​,b=−22+7​​​
For a2−b2=−2, subsitute a with 2b3​​(2b3​​)2−b2=−2
Solve (2b3​​)2−b2=−2:b=22+7​​​,b=−22+7​​​
(2b3​​)2−b2=−2
Simplify (2b3​​)2:4b23​
(2b3​​)2
Apply exponent rule: (ba​)c=bcac​=(2b)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(2b)2=22b2=22b2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22b23​
22=4=4b23​
4b23​−b2=−2
Multiply both sides by 4b2
4b23​−b2=−2
Multiply both sides by 4b24b23​⋅4b2−b2⋅4b2=−2⋅4b2
Simplify
4b23​⋅4b2−b2⋅4b2=−2⋅4b2
Simplify 4b23​⋅4b2:3
4b23​⋅4b2
Multiply fractions: a⋅cb​=ca⋅b​=4b23⋅4b2​
Cancel the common factor: 4=b23b2​
Cancel the common factor: b2=3
Simplify −b2⋅4b2:−4b4
−b2⋅4b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−4b2+2
Add the numbers: 2+2=4=−4b4
Simplify −2⋅4b2:−8b2
−2⋅4b2
Multiply the numbers: 2⋅4=8=−8b2
3−4b4=−8b2
3−4b4=−8b2
3−4b4=−8b2
Solve 3−4b4=−8b2:b=22+7​​​,b=−22+7​​​
3−4b4=−8b2
Move 8b2to the left side
3−4b4=−8b2
Add 8b2 to both sides3−4b4+8b2=−8b2+8b2
Simplify3−4b4+8b2=0
3−4b4+8b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−4b4+8b2+3=0
Rewrite the equation with u=b2 and u2=b4−4u2+8u+3=0
Solve −4u2+8u+3=0:u=−2−2+7​​,u=22+7​​
−4u2+8u+3=0
Solve with the quadratic formula
−4u2+8u+3=0
Quadratic Equation Formula:
For a=−4,b=8,c=3u1,2​=2(−4)−8±82−4(−4)⋅3​​
u1,2​=2(−4)−8±82−4(−4)⋅3​​
82−4(−4)⋅3​=47​
82−4(−4)⋅3​
Apply rule −(−a)=a=82+4⋅4⋅3​
Multiply the numbers: 4⋅4⋅3=48=82+48​
82=64=64+48​
Add the numbers: 64+48=112=112​
Prime factorization of 112:24⋅7
112
112divides by 2112=56⋅2=2⋅56
56divides by 256=28⋅2=2⋅2⋅28
28divides by 228=14⋅2=2⋅2⋅2⋅14
14divides by 214=7⋅2=2⋅2⋅2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅7
=24⋅7
=24⋅7​
Apply radical rule: =7​24​
Apply radical rule: 24​=224​=22=227​
Refine=47​
u1,2​=2(−4)−8±47​​
Separate the solutionsu1​=2(−4)−8+47​​,u2​=2(−4)−8−47​​
u=2(−4)−8+47​​:−2−2+7​​
2(−4)−8+47​​
Remove parentheses: (−a)=−a=−2⋅4−8+47​​
Multiply the numbers: 2⋅4=8=−8−8+47​​
Apply the fraction rule: −ba​=−ba​=−8−8+47​​
Cancel 8−8+47​​:27​−2​
8−8+47​​
Factor −8+47​:4(−2+7​)
−8+47​
Rewrite as=−4⋅2+47​
Factor out common term 4=4(−2+7​)
=84(−2+7​)​
Cancel the common factor: 4=2−2+7​​
=−27​−2​
=−2−2+7​​
u=2(−4)−8−47​​:22+7​​
2(−4)−8−47​​
Remove parentheses: (−a)=−a=−2⋅4−8−47​​
Multiply the numbers: 2⋅4=8=−8−8−47​​
Apply the fraction rule: −b−a​=ba​−8−47​=−(8+47​)=88+47​​
Factor 8+47​:4(2+7​)
8+47​
Rewrite as=4⋅2+47​
Factor out common term 4=4(2+7​)
=84(2+7​)​
Cancel the common factor: 4=22+7​​
The solutions to the quadratic equation are:u=−2−2+7​​,u=22+7​​
u=−2−2+7​​,u=22+7​​
Substitute back u=b2,solve for b
Solve b2=−2−2+7​​:No Solution for b∈R
b2=−2−2+7​​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=22+7​​:b=22+7​​​,b=−22+7​​​
b2=22+7​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=22+7​​​,b=−22+7​​​
The solutions are
b=22+7​​​,b=−22+7​​​
b=22+7​​​,b=−22+7​​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (2b3​​)2−b2 and compare to zero
Solve 2b=0:b=0
2b=0
Divide both sides by 2
2b=0
Divide both sides by 222b​=20​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=22+7​​​,b=−22+7​​​
Plug the solutions b=22+7​​​,b=−22+7​​​ into 2ab=3​
For 2ab=3​, subsitute b with 22+7​​​:a=2​2+7​​3​​
For 2ab=3​, subsitute b with 22+7​​​2a22+7​​​=3​
Solve 2a22+7​​​=3​:a=2​2+7​​3​​
2a22+7​​​=3​
Divide both sides by 222+7​​​
2a22+7​​​=3​
Divide both sides by 222+7​​​222+7​​​2a22+7​​​​=222+7​​​3​​
Simplify
222+7​​​2a22+7​​​​=222+7​​​3​​
Simplify 222+7​​​2a22+7​​​​:a
222+7​​​2a22+7​​​​
Divide the numbers: 22​=1=22+7​​​22+7​​​a​
Cancel the common factor: 22+7​​​=a
Simplify 222+7​​​3​​:2​2+7​​3​​
222+7​​​3​​
22+7​​​=2​2+7​​​
22+7​​​
Apply radical rule: assuming a≥0,b≥0=2​2+7​​​
=2⋅2​2+7​​​3​​
Multiply 2⋅2​2+7​​​:2​2+7​​
2⋅2​2+7​​​
Multiply fractions: a⋅cb​=ca⋅b​=2​2+7​​⋅2​
Apply radical rule: 2​=221​=221​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=2−21​+12+7​​
Subtract the numbers: 1−21​=21​=221​2+7​​
Apply radical rule: 221​=2​=2​2+7​​
=2​2+7​​3​​
a=2​2+7​​3​​
a=2​2+7​​3​​
a=2​2+7​​3​​
For 2ab=3​, subsitute b with −22+7​​​:a=−2​2+7​​3​​
For 2ab=3​, subsitute b with −22+7​​​2a​−22+7​​​​=3​
Solve 2a​−22+7​​​​=3​:a=−2​2+7​​3​​
2a​−22+7​​​​=3​
Divide both sides by 2​−22+7​​​​
2a​−22+7​​​​=3​
Divide both sides by 2​−22+7​​​​2(−22+7​​​)2a(−22+7​​​)​=2(−22+7​​​)3​​
Simplify
2(−22+7​​​)2a(−22+7​​​)​=2(−22+7​​​)3​​
Simplify 2(−22+7​​​)2a(−22+7​​​)​:a
2(−22+7​​​)2a(−22+7​​​)​
Remove parentheses: (−a)=−a=−222+7​​​−2a22+7​​​​
Apply the fraction rule: −b−a​=ba​=222+7​​​2a22+7​​​​
Divide the numbers: 22​=1=22+7​​​22+7​​​a​
Cancel the common factor: 22+7​​​=a
Simplify 2(−22+7​​​)3​​:−2​2+7​​3​​
2(−22+7​​​)3​​
Remove parentheses: (−a)=−a=−222+7​​​3​​
Apply the fraction rule: −ba​=−ba​=−222+7​​​3​​
22+7​​​=2​2+7​​​
22+7​​​
Apply radical rule: assuming a≥0,b≥0=2​2+7​​​
=−2⋅2​2+7​​​3​​
Multiply 2⋅2​2+7​​​:2​2+7​​
2⋅2​2+7​​​
Multiply fractions: a⋅cb​=ca⋅b​=2​2+7​​⋅2​
Apply radical rule: 2​=221​=221​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=2−21​+12+7​​
Subtract the numbers: 1−21​=21​=221​2+7​​
Apply radical rule: 221​=2​=2​2+7​​
=−2​2+7​​3​​
a=−2​2+7​​3​​
a=−2​2+7​​3​​
a=−2​2+7​​3​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=−2
Remove the ones that don't agree with the equation.
Check the solution a=−2​2+7​​3​​,b=−22+7​​​:True
a2−b2=−2
Plug in a=−2​2+7​​3​​,b=−22+7​​​(−2​2+7​​3​​)2−​−22+7​​​​2=−2
Refine−2=−2
True
Check the solution a=2​2+7​​3​​,b=22+7​​​:True
a2−b2=−2
Plug in a=2​2+7​​3​​,b=22+7​​​(2​2+7​​3​​)2−​22+7​​​​2=−2
Refine−2=−2
True
Check the solutions by plugging them into 2ab=3​
Remove the ones that don't agree with the equation.
Check the solution a=−2​2+7​​3​​,b=−22+7​​​:True
2ab=3​
Plug in a=−2​2+7​​3​​,b=−22+7​​​2(−2​2+7​​3​​)​−22+7​​​​=3​
Refine3​=3​
True
Check the solution a=2​2+7​​3​​,b=22+7​​​:True
2ab=3​
Plug in a=2​2+7​​3​​,b=22+7​​​2⋅2​2+7​​3​​22+7​​​=3​
Refine3​=3​
True
Therefore, the final solutions for a2−b2=−2,2ab=3​ are ​a=2​2+7​​3​​,a=−2​2+7​​3​​,​b=22+7​​​b=−22+7​​​​​
Substitute back u=a+biu=2​2+7​​3​​+22+7​​​i,u=−2​2+7​​3​​−22+7​​​i
Solve u2=−2−3​i:u=−2​2+7​​3​​+22+7​​​i,u=2​2+7​​3​​−22+7​​​i
u2=−2−3​i
Substitute u=a+bi(a+bi)2=−2−3​i
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=−2−3​i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=−22ab=−3​​]
[a2−b2=−22ab=−3​​]:​a=−2​2+7​​3​​,a=2​2+7​​3​​,​b=22+7​​​b=−22+7​​​​​
[a2−b2=−22ab=−3​​]
Isolate afor 2ab=−3​:a=−2b3​​
2ab=−3​
Divide both sides by 2b
2ab=−3​
Divide both sides by 2b2b2ab​=2b−3​​
Simplifya=−2b3​​
a=−2b3​​
Plug the solutions a=−2b3​​ into a2−b2=−2
For a2−b2=−2, subsitute a with −2b3​​:b=22+7​​​,b=−22+7​​​
For a2−b2=−2, subsitute a with −2b3​​(−2b3​​)2−b2=−2
Solve (−2b3​​)2−b2=−2:b=22+7​​​,b=−22+7​​​
(−2b3​​)2−b2=−2
Simplify (−2b3​​)2:4b23​
(−2b3​​)2
Apply exponent rule: (−a)n=an,if n is even(−2b3​​)2=(2b3​​)2=(2b3​​)2
Apply exponent rule: (ba​)c=bcac​=(2b)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(2b)2=22b2=22b2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22b23​
22=4=4b23​
4b23​−b2=−2
Multiply both sides by 4b2
4b23​−b2=−2
Multiply both sides by 4b24b23​⋅4b2−b2⋅4b2=−2⋅4b2
Simplify
4b23​⋅4b2−b2⋅4b2=−2⋅4b2
Simplify 4b23​⋅4b2:3
4b23​⋅4b2
Multiply fractions: a⋅cb​=ca⋅b​=4b23⋅4b2​
Cancel the common factor: 4=b23b2​
Cancel the common factor: b2=3
Simplify −b2⋅4b2:−4b4
−b2⋅4b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−4b2+2
Add the numbers: 2+2=4=−4b4
Simplify −2⋅4b2:−8b2
−2⋅4b2
Multiply the numbers: 2⋅4=8=−8b2
3−4b4=−8b2
3−4b4=−8b2
3−4b4=−8b2
Solve 3−4b4=−8b2:b=22+7​​​,b=−22+7​​​
3−4b4=−8b2
Move 8b2to the left side
3−4b4=−8b2
Add 8b2 to both sides3−4b4+8b2=−8b2+8b2
Simplify3−4b4+8b2=0
3−4b4+8b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−4b4+8b2+3=0
Rewrite the equation with u=b2 and u2=b4−4u2+8u+3=0
Solve −4u2+8u+3=0:u=−2−2+7​​,u=22+7​​
−4u2+8u+3=0
Solve with the quadratic formula
−4u2+8u+3=0
Quadratic Equation Formula:
For a=−4,b=8,c=3u1,2​=2(−4)−8±82−4(−4)⋅3​​
u1,2​=2(−4)−8±82−4(−4)⋅3​​
82−4(−4)⋅3​=47​
82−4(−4)⋅3​
Apply rule −(−a)=a=82+4⋅4⋅3​
Multiply the numbers: 4⋅4⋅3=48=82+48​
82=64=64+48​
Add the numbers: 64+48=112=112​
Prime factorization of 112:24⋅7
112
112divides by 2112=56⋅2=2⋅56
56divides by 256=28⋅2=2⋅2⋅28
28divides by 228=14⋅2=2⋅2⋅2⋅14
14divides by 214=7⋅2=2⋅2⋅2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅7
=24⋅7
=24⋅7​
Apply radical rule: =7​24​
Apply radical rule: 24​=224​=22=227​
Refine=47​
u1,2​=2(−4)−8±47​​
Separate the solutionsu1​=2(−4)−8+47​​,u2​=2(−4)−8−47​​
u=2(−4)−8+47​​:−2−2+7​​
2(−4)−8+47​​
Remove parentheses: (−a)=−a=−2⋅4−8+47​​
Multiply the numbers: 2⋅4=8=−8−8+47​​
Apply the fraction rule: −ba​=−ba​=−8−8+47​​
Cancel 8−8+47​​:27​−2​
8−8+47​​
Factor −8+47​:4(−2+7​)
−8+47​
Rewrite as=−4⋅2+47​
Factor out common term 4=4(−2+7​)
=84(−2+7​)​
Cancel the common factor: 4=2−2+7​​
=−27​−2​
=−2−2+7​​
u=2(−4)−8−47​​:22+7​​
2(−4)−8−47​​
Remove parentheses: (−a)=−a=−2⋅4−8−47​​
Multiply the numbers: 2⋅4=8=−8−8−47​​
Apply the fraction rule: −b−a​=ba​−8−47​=−(8+47​)=88+47​​
Factor 8+47​:4(2+7​)
8+47​
Rewrite as=4⋅2+47​
Factor out common term 4=4(2+7​)
=84(2+7​)​
Cancel the common factor: 4=22+7​​
The solutions to the quadratic equation are:u=−2−2+7​​,u=22+7​​
u=−2−2+7​​,u=22+7​​
Substitute back u=b2,solve for b
Solve b2=−2−2+7​​:No Solution for b∈R
b2=−2−2+7​​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=22+7​​:b=22+7​​​,b=−22+7​​​
b2=22+7​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=22+7​​​,b=−22+7​​​
The solutions are
b=22+7​​​,b=−22+7​​​
b=22+7​​​,b=−22+7​​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (−2b3​​)2−b2 and compare to zero
Solve 2b=0:b=0
2b=0
Divide both sides by 2
2b=0
Divide both sides by 222b​=20​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=22+7​​​,b=−22+7​​​
Plug the solutions b=22+7​​​,b=−22+7​​​ into 2ab=−3​
For 2ab=−3​, subsitute b with 22+7​​​:a=−2​2+7​​3​​
For 2ab=−3​, subsitute b with 22+7​​​2a22+7​​​=−3​
Solve 2a22+7​​​=−3​:a=−2​2+7​​3​​
2a22+7​​​=−3​
Divide both sides by 222+7​​​
2a22+7​​​=−3​
Divide both sides by 222+7​​​222+7​​​2a22+7​​​​=222+7​​​−3​​
Simplify
222+7​​​2a22+7​​​​=222+7​​​−3​​
Simplify 222+7​​​2a22+7​​​​:a
222+7​​​2a22+7​​​​
Divide the numbers: 22​=1=22+7​​​22+7​​​a​
Cancel the common factor: 22+7​​​=a
Simplify 222+7​​​−3​​:−2​2+7​​3​​
222+7​​​−3​​
Apply the fraction rule: b−a​=−ba​=−222+7​​​3​​
22+7​​​=2​2+7​​​
22+7​​​
Apply radical rule: assuming a≥0,b≥0=2​2+7​​​
=−2⋅2​2+7​​​3​​
Multiply 2⋅2​2+7​​​:2​2+7​​
2⋅2​2+7​​​
Multiply fractions: a⋅cb​=ca⋅b​=2​2+7​​⋅2​
Apply radical rule: 2​=221​=221​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=2−21​+12+7​​
Subtract the numbers: 1−21​=21​=221​2+7​​
Apply radical rule: 221​=2​=2​2+7​​
=−2​2+7​​3​​
a=−2​2+7​​3​​
a=−2​2+7​​3​​
a=−2​2+7​​3​​
For 2ab=−3​, subsitute b with −22+7​​​:a=2​2+7​​3​​
For 2ab=−3​, subsitute b with −22+7​​​2a​−22+7​​​​=−3​
Solve 2a​−22+7​​​​=−3​:a=2​2+7​​3​​
2a​−22+7​​​​=−3​
Divide both sides by 2​−22+7​​​​
2a​−22+7​​​​=−3​
Divide both sides by 2​−22+7​​​​2(−22+7​​​)2a(−22+7​​​)​=2(−22+7​​​)−3​​
Simplify
2(−22+7​​​)2a(−22+7​​​)​=2(−22+7​​​)−3​​
Simplify 2(−22+7​​​)2a(−22+7​​​)​:a
2(−22+7​​​)2a(−22+7​​​)​
Remove parentheses: (−a)=−a=−222+7​​​−2a22+7​​​​
Apply the fraction rule: −b−a​=ba​=222+7​​​2a22+7​​​​
Divide the numbers: 22​=1=22+7​​​22+7​​​a​
Cancel the common factor: 22+7​​​=a
Simplify 2(−22+7​​​)−3​​:2​2+7​​3​​
2(−22+7​​​)−3​​
Remove parentheses: (−a)=−a=−222+7​​​−3​​
Apply the fraction rule: −b−a​=ba​=222+7​​​3​​
22+7​​​=2​2+7​​​
22+7​​​
Apply radical rule: assuming a≥0,b≥0=2​2+7​​​
=2⋅2​2+7​​​3​​
Multiply 2⋅2​2+7​​​:2​2+7​​
2⋅2​2+7​​​
Multiply fractions: a⋅cb​=ca⋅b​=2​2+7​​⋅2​
Apply radical rule: 2​=221​=221​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=2−21​+12+7​​
Subtract the numbers: 1−21​=21​=221​2+7​​
Apply radical rule: 221​=2​=2​2+7​​
=2​2+7​​3​​
a=2​2+7​​3​​
a=2​2+7​​3​​
a=2​2+7​​3​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=−2
Remove the ones that don't agree with the equation.
Check the solution a=2​2+7​​3​​,b=−22+7​​​:True
a2−b2=−2
Plug in a=2​2+7​​3​​,b=−22+7​​​(2​2+7​​3​​)2−​−22+7​​​​2=−2
Refine−2=−2
True
Check the solution a=−2​2+7​​3​​,b=22+7​​​:True
a2−b2=−2
Plug in a=−2​2+7​​3​​,b=22+7​​​(−2​2+7​​3​​)2−​22+7​​​​2=−2
Refine−2=−2
True
Check the solutions by plugging them into 2ab=−3​
Remove the ones that don't agree with the equation.
Check the solution a=2​2+7​​3​​,b=−22+7​​​:True
2ab=−3​
Plug in a=2​2+7​​3​​,b=−22+7​​​2⋅2​2+7​​3​​​−22+7​​​​=−3​
Refine−3​=−3​
True
Check the solution a=−2​2+7​​3​​,b=22+7​​​:True
2ab=−3​
Plug in a=−2​2+7​​3​​,b=22+7​​​2(−2​2+7​​3​​)22+7​​​=−3​
Refine−3​=−3​
True
Therefore, the final solutions for a2−b2=−2,2ab=−3​ are ​a=−2​2+7​​3​​,a=2​2+7​​3​​,​b=22+7​​​b=−22+7​​​​​
Substitute back u=a+biu=−2​2+7​​3​​+22+7​​​i,u=2​2+7​​3​​−22+7​​​i
The solutions are
u=2​2+7​​3​​+22+7​​​i,u=−2​2+7​​3​​−22+7​​​i,u=−2​2+7​​3​​+22+7​​​i,u=2​2+7​​3​​−22+7​​​i
Substitute back u=cos(x)cos(x)=2​2+7​​3​​+22+7​​​i,cos(x)=−2​2+7​​3​​−22+7​​​i,cos(x)=−2​2+7​​3​​+22+7​​​i,cos(x)=2​2+7​​3​​−22+7​​​i
cos(x)=2​2+7​​3​​+22+7​​​i,cos(x)=−2​2+7​​3​​−22+7​​​i,cos(x)=−2​2+7​​3​​+22+7​​​i,cos(x)=2​2+7​​3​​−22+7​​​i
cos(x)=2​2+7​​3​​+22+7​​​i:No Solution
cos(x)=2​2+7​​3​​+22+7​​​i
Simplify 2​2+7​​3​​+22+7​​​i:33​(214+77​​​−2​2+7​​)​+i22+7​​​
2​2+7​​3​​+22+7​​​i
2​2+7​​3​​=−66​(2−7​)2+7​​​
2​2+7​​3​​
Multiply by the conjugate 2​2​​=2​2+7​​2​3​2​​
3​2​=6​
3​2​
Apply radical rule: a​b​=a⋅b​3​2​=3⋅2​=3⋅2​
Multiply the numbers: 3⋅2=6=6​
2​2+7​​2​=22+7​​
2​2+7​​2​
Apply radical rule: a​a​=a2​2​=2=22+7​​
=22+7​​6​​
Multiply by the conjugate 2+7​​2+7​​​=22+7​​2+7​​6​2+7​​​
22+7​​2+7​​=4+27​
22+7​​2+7​​
Apply radical rule: a​a​=a2+7​​2+7​​=2+7​=2(2+7​)
Apply the distributive law: a(b+c)=ab+aca=2,b=2,c=7​=2⋅2+27​
Multiply the numbers: 2⋅2=4=4+27​
=4+27​6​2+7​​​
Multiply by the conjugate 4−27​4−27​​=(4+27​)(4−27​)6​2+7​​(4−27​)​
(4+27​)(4−27​)=−12
(4+27​)(4−27​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=4,b=27​=42−(27​)2
Simplify 42−(27​)2:−12
42−(27​)2
42=16
42
42=16=16
(27​)2=28
(27​)2
Apply exponent rule: (a⋅b)n=anbn=22(7​)2
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=16−28
Subtract the numbers: 16−28=−12=−12
=−12
=−126​(4−27​)2+7​​​
Apply the fraction rule: −ba​=−ba​=−126​(4−27​)2+7​​​
Cancel 126​(4−27​)2+7​​​:66​(2−7​)2+7​​​
126​(4−27​)2+7​​​
Factor 4−27​:2(2−7​)
4−27​
Rewrite as=2⋅2−27​
Factor out common term 2=2(2−7​)
=126​⋅2(2−7​)2+7​​​
Cancel the common factor: 2=66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​+i22+7​​​
Rewrite −66​(2−7​)2+7​​​+22+7​​​i in standard complex form: 33​(−2​2+7​​+214+77​​​)​+22+7​​​i
−66​(2−7​)2+7​​​+22+7​​​i
66​(2−7​)2+7​​​=6​22+7​​−14+77​​​
66​(2−7​)2+7​​​
Apply radical rule: 6​=621​=6621​(2−7​)2+7​​​
Apply exponent rule: xbxa​=xb−a1​61621​​=61−21​1​=61−21​(2−7​)2+7​​​
Subtract the numbers: 1−21​=21​=621​(2−7​)2+7​​​
Apply radical rule: 621​=6​=6​(2−7​)2+7​​​
Expand (2−7​)2+7​​:22+7​​−14+77​​
(2−7​)2+7​​
Apply the distributive law: a(b−c)=ab−aca=2+7​​,b=2,c=7​=2+7​​⋅2−2+7​​7​
=22+7​​−7​2+7​​
7​2+7​​=14+77​​
7​2+7​​
Apply radical rule: a​b​=a⋅b​7​2+7​​=7(2+7​)​=7(2+7​)​
Expand 7(2+7​):14+77​
7(2+7​)
Apply the distributive law: a(b+c)=ab+aca=7,b=2,c=7​=7⋅2+77​
Multiply the numbers: 7⋅2=14=14+77​
=14+77​​
=22+7​​−14+77​​
=6​22+7​​−14+77​​​
=−6​22+7​​−14+77​​​+i22+7​​​
Apply the fraction rule: ca±b​=ca​±cb​6​22+7​​−14+77​​​=−(6​22+7​​​)−(−6​14+77​​​)=−(6​22+7​​​)−(−6​14+77​​​)+i22+7​​​
Remove parentheses: (a)=a,−(−a)=a=−6​22+7​​​+6​14+77​​​+i22+7​​​
Cancel 6​22+7​​​:3​2​2+7​​​
6​22+7​​​
Factor 6​:2​3​
Factor 6=2⋅3=2⋅3​
Apply radical rule: =2​3​
=2​3​22+7​​​
Cancel 2​3​22+7​​​:3​2​2+7​​​
2​3​22+7​​​
Apply radical rule: 2​=221​=221​3​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=3​2−21​+12+7​​​
Subtract the numbers: 1−21​=21​=3​221​2+7​​​
Apply radical rule: 221​=2​=3​2​2+7​​​
=3​2​2+7​​​
=−3​2​2+7​​​+6​14+77​​​+i22+7​​​
Combine same powers : y​x​​=yx​​=−3​2​2+7​​​+614+77​​​+i22+7​​​
Group the real part and the imaginary part of the complex number=​−3​2​2+7​​​+614+77​​​​+22+7​​​i
−3​2​2+7​​​+614+77​​​=33​(−2​2+7​​+214+77​​​)​
−3​2​2+7​​​+614+77​​​
Convert element to fraction: 614+77​​​=3​614+7⋅7​​​3​​=−3​2​2+7​​​+3​614+77​​​3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​−2​2+7​​+614+77​​​3​​
614+77​​​3​=214+77​​​
614+77​​​3​
Apply radical rule: a​b​=a⋅b​3​614+77​​​=3⋅614+77​​​=3⋅614+77​​​
614+77​​⋅3=214+77​​
614+77​​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=6(14+77​)⋅3​
Cancel the common factor: 3=214+77​​
=214+77​​​
=3​−2​2+7​​+214+77​​​​
Rationalize 3​−2​2+7​​+214+77​​​​:33​(214+77​​​−2​2+7​​)​
3​−2​2+7​​+214+77​​​​
Multiply by the conjugate 3​3​​=3​3​(−2​2+7​​+214+77​​​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(−2​2+7​​+214+77​​​)​
=33​(214+77​​​−2​2+7​​)​
=33​(−2​2+7​​+214+77​​​)​+22+7​​​i
=33​(−2​2+7​​+214+77​​​)​+22+7​​​i
NoSolution
cos(x)=−2​2+7​​3​​−22+7​​​i:No Solution
cos(x)=−2​2+7​​3​​−22+7​​​i
Simplify −2​2+7​​3​​−22+7​​​i:33​(−214+77​​​+2​2+7​​)​−i22+7​​​
−2​2+7​​3​​−22+7​​​i
2​2+7​​3​​=−66​(2−7​)2+7​​​
2​2+7​​3​​
Multiply by the conjugate 2​2​​=2​2+7​​2​3​2​​
3​2​=6​
3​2​
Apply radical rule: a​b​=a⋅b​3​2​=3⋅2​=3⋅2​
Multiply the numbers: 3⋅2=6=6​
2​2+7​​2​=22+7​​
2​2+7​​2​
Apply radical rule: a​a​=a2​2​=2=22+7​​
=22+7​​6​​
Multiply by the conjugate 2+7​​2+7​​​=22+7​​2+7​​6​2+7​​​
22+7​​2+7​​=4+27​
22+7​​2+7​​
Apply radical rule: a​a​=a2+7​​2+7​​=2+7​=2(2+7​)
Apply the distributive law: a(b+c)=ab+aca=2,b=2,c=7​=2⋅2+27​
Multiply the numbers: 2⋅2=4=4+27​
=4+27​6​2+7​​​
Multiply by the conjugate 4−27​4−27​​=(4+27​)(4−27​)6​2+7​​(4−27​)​
(4+27​)(4−27​)=−12
(4+27​)(4−27​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=4,b=27​=42−(27​)2
Simplify 42−(27​)2:−12
42−(27​)2
42=16
42
42=16=16
(27​)2=28
(27​)2
Apply exponent rule: (a⋅b)n=anbn=22(7​)2
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=16−28
Subtract the numbers: 16−28=−12=−12
=−12
=−126​(4−27​)2+7​​​
Apply the fraction rule: −ba​=−ba​=−126​(4−27​)2+7​​​
Cancel 126​(4−27​)2+7​​​:66​(2−7​)2+7​​​
126​(4−27​)2+7​​​
Factor 4−27​:2(2−7​)
4−27​
Rewrite as=2⋅2−27​
Factor out common term 2=2(2−7​)
=126​⋅2(2−7​)2+7​​​
Cancel the common factor: 2=66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​
=−(−66​(2−7​)2+7​​​)−i22+7​​​
Rewrite −(−66​(2−7​)2+7​​​)−22+7​​​i in standard complex form: 33​(2​2+7​​−214+77​​​)​−22+7​​​i
−(−66​(2−7​)2+7​​​)−22+7​​​i
Apply rule −(−a)=a=66​(2−7​)2+7​​​−22+7​​​i
66​(2−7​)2+7​​​=6​22+7​​−14+77​​​
66​(2−7​)2+7​​​
Apply radical rule: 6​=621​=6621​(2−7​)2+7​​​
Apply exponent rule: xbxa​=xb−a1​61621​​=61−21​1​=61−21​(2−7​)2+7​​​
Subtract the numbers: 1−21​=21​=621​(2−7​)2+7​​​
Apply radical rule: 621​=6​=6​(2−7​)2+7​​​
Expand (2−7​)2+7​​:22+7​​−14+77​​
(2−7​)2+7​​
Apply the distributive law: a(b−c)=ab−aca=2+7​​,b=2,c=7​=2+7​​⋅2−2+7​​7​
=22+7​​−7​2+7​​
7​2+7​​=14+77​​
7​2+7​​
Apply radical rule: a​b​=a⋅b​7​2+7​​=7(2+7​)​=7(2+7​)​
Expand 7(2+7​):14+77​
7(2+7​)
Apply the distributive law: a(b+c)=ab+aca=7,b=2,c=7​=7⋅2+77​
Multiply the numbers: 7⋅2=14=14+77​
=14+77​​
=22+7​​−14+77​​
=6​22+7​​−14+77​​​
=6​22+7​​−14+77​​​−i22+7​​​
Apply the fraction rule: ca±b​=ca​±cb​6​22+7​​−14+77​​​=6​22+7​​​−6​14+77​​​=6​22+7​​​−6​14+77​​​−i22+7​​​
Cancel 6​22+7​​​:3​2​2+7​​​
6​22+7​​​
Factor 6​:2​3​
Factor 6=2⋅3=2⋅3​
Apply radical rule: =2​3​
=2​3​22+7​​​
Cancel 2​3​22+7​​​:3​2​2+7​​​
2​3​22+7​​​
Apply radical rule: 2​=221​=221​3​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=3​2−21​+12+7​​​
Subtract the numbers: 1−21​=21​=3​221​2+7​​​
Apply radical rule: 221​=2​=3​2​2+7​​​
=3​2​2+7​​​
=3​2​2+7​​​−6​14+77​​​−i22+7​​​
Combine same powers : y​x​​=yx​​=3​2​2+7​​​−614+77​​​−i22+7​​​
Group the real part and the imaginary part of the complex number=​3​2​2+7​​​−614+77​​​​−22+7​​​i
3​2​2+7​​​−614+77​​​=33​(2​2+7​​−214+77​​​)​
3​2​2+7​​​−614+77​​​
Convert element to fraction: 614+77​​​=3​614+7⋅7​​​3​​=3​2​2+7​​​−3​614+77​​​3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​2​2+7​​−614+77​​​3​​
614+77​​​3​=214+77​​​
614+77​​​3​
Apply radical rule: a​b​=a⋅b​3​614+77​​​=3⋅614+77​​​=3⋅614+77​​​
614+77​​⋅3=214+77​​
614+77​​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=6(14+77​)⋅3​
Cancel the common factor: 3=214+77​​
=214+77​​​
=3​2​2+7​​−214+77​​​​
Rationalize 3​2​2+7​​−214+77​​​​:33​(2​2+7​​−214+77​​​)​
3​2​2+7​​−214+77​​​​
Multiply by the conjugate 3​3​​=3​3​(2​2+7​​−214+77​​​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(2​2+7​​−214+77​​​)​
=33​(2​2+7​​−214+77​​​)​
=33​(2​2+7​​−214+77​​​)​−22+7​​​i
=33​(2​2+7​​−214+77​​​)​−22+7​​​i
NoSolution
cos(x)=−2​2+7​​3​​+22+7​​​i:No Solution
cos(x)=−2​2+7​​3​​+22+7​​​i
Simplify −2​2+7​​3​​+22+7​​​i:33​(−214+77​​​+2​2+7​​)​+i22+7​​​
−2​2+7​​3​​+22+7​​​i
2​2+7​​3​​=−66​(2−7​)2+7​​​
2​2+7​​3​​
Multiply by the conjugate 2​2​​=2​2+7​​2​3​2​​
3​2​=6​
3​2​
Apply radical rule: a​b​=a⋅b​3​2​=3⋅2​=3⋅2​
Multiply the numbers: 3⋅2=6=6​
2​2+7​​2​=22+7​​
2​2+7​​2​
Apply radical rule: a​a​=a2​2​=2=22+7​​
=22+7​​6​​
Multiply by the conjugate 2+7​​2+7​​​=22+7​​2+7​​6​2+7​​​
22+7​​2+7​​=4+27​
22+7​​2+7​​
Apply radical rule: a​a​=a2+7​​2+7​​=2+7​=2(2+7​)
Apply the distributive law: a(b+c)=ab+aca=2,b=2,c=7​=2⋅2+27​
Multiply the numbers: 2⋅2=4=4+27​
=4+27​6​2+7​​​
Multiply by the conjugate 4−27​4−27​​=(4+27​)(4−27​)6​2+7​​(4−27​)​
(4+27​)(4−27​)=−12
(4+27​)(4−27​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=4,b=27​=42−(27​)2
Simplify 42−(27​)2:−12
42−(27​)2
42=16
42
42=16=16
(27​)2=28
(27​)2
Apply exponent rule: (a⋅b)n=anbn=22(7​)2
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=16−28
Subtract the numbers: 16−28=−12=−12
=−12
=−126​(4−27​)2+7​​​
Apply the fraction rule: −ba​=−ba​=−126​(4−27​)2+7​​​
Cancel 126​(4−27​)2+7​​​:66​(2−7​)2+7​​​
126​(4−27​)2+7​​​
Factor 4−27​:2(2−7​)
4−27​
Rewrite as=2⋅2−27​
Factor out common term 2=2(2−7​)
=126​⋅2(2−7​)2+7​​​
Cancel the common factor: 2=66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​
=−(−66​(2−7​)2+7​​​)+i22+7​​​
Rewrite −(−66​(2−7​)2+7​​​)+22+7​​​i in standard complex form: 33​(2​2+7​​−214+77​​​)​+22+7​​​i
−(−66​(2−7​)2+7​​​)+22+7​​​i
Apply rule −(−a)=a=66​(2−7​)2+7​​​+22+7​​​i
66​(2−7​)2+7​​​=6​22+7​​−14+77​​​
66​(2−7​)2+7​​​
Apply radical rule: 6​=621​=6621​(2−7​)2+7​​​
Apply exponent rule: xbxa​=xb−a1​61621​​=61−21​1​=61−21​(2−7​)2+7​​​
Subtract the numbers: 1−21​=21​=621​(2−7​)2+7​​​
Apply radical rule: 621​=6​=6​(2−7​)2+7​​​
Expand (2−7​)2+7​​:22+7​​−14+77​​
(2−7​)2+7​​
Apply the distributive law: a(b−c)=ab−aca=2+7​​,b=2,c=7​=2+7​​⋅2−2+7​​7​
=22+7​​−7​2+7​​
7​2+7​​=14+77​​
7​2+7​​
Apply radical rule: a​b​=a⋅b​7​2+7​​=7(2+7​)​=7(2+7​)​
Expand 7(2+7​):14+77​
7(2+7​)
Apply the distributive law: a(b+c)=ab+aca=7,b=2,c=7​=7⋅2+77​
Multiply the numbers: 7⋅2=14=14+77​
=14+77​​
=22+7​​−14+77​​
=6​22+7​​−14+77​​​
=6​22+7​​−14+77​​​+i22+7​​​
Apply the fraction rule: ca±b​=ca​±cb​6​22+7​​−14+77​​​=6​22+7​​​−6​14+77​​​=6​22+7​​​−6​14+77​​​+i22+7​​​
Cancel 6​22+7​​​:3​2​2+7​​​
6​22+7​​​
Factor 6​:2​3​
Factor 6=2⋅3=2⋅3​
Apply radical rule: =2​3​
=2​3​22+7​​​
Cancel 2​3​22+7​​​:3​2​2+7​​​
2​3​22+7​​​
Apply radical rule: 2​=221​=221​3​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=3​2−21​+12+7​​​
Subtract the numbers: 1−21​=21​=3​221​2+7​​​
Apply radical rule: 221​=2​=3​2​2+7​​​
=3​2​2+7​​​
=3​2​2+7​​​−6​14+77​​​+i22+7​​​
Combine same powers : y​x​​=yx​​=3​2​2+7​​​−614+77​​​+i22+7​​​
Group the real part and the imaginary part of the complex number=​3​2​2+7​​​−614+77​​​​+22+7​​​i
3​2​2+7​​​−614+77​​​=33​(2​2+7​​−214+77​​​)​
3​2​2+7​​​−614+77​​​
Convert element to fraction: 614+77​​​=3​614+7⋅7​​​3​​=3​2​2+7​​​−3​614+77​​​3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​2​2+7​​−614+77​​​3​​
614+77​​​3​=214+77​​​
614+77​​​3​
Apply radical rule: a​b​=a⋅b​3​614+77​​​=3⋅614+77​​​=3⋅614+77​​​
614+77​​⋅3=214+77​​
614+77​​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=6(14+77​)⋅3​
Cancel the common factor: 3=214+77​​
=214+77​​​
=3​2​2+7​​−214+77​​​​
Rationalize 3​2​2+7​​−214+77​​​​:33​(2​2+7​​−214+77​​​)​
3​2​2+7​​−214+77​​​​
Multiply by the conjugate 3​3​​=3​3​(2​2+7​​−214+77​​​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(2​2+7​​−214+77​​​)​
=33​(2​2+7​​−214+77​​​)​
=33​(2​2+7​​−214+77​​​)​+22+7​​​i
=33​(2​2+7​​−214+77​​​)​+22+7​​​i
NoSolution
cos(x)=2​2+7​​3​​−22+7​​​i:No Solution
cos(x)=2​2+7​​3​​−22+7​​​i
Simplify 2​2+7​​3​​−22+7​​​i:33​(214+77​​​−2​2+7​​)​−i22+7​​​
2​2+7​​3​​−22+7​​​i
2​2+7​​3​​=−66​(2−7​)2+7​​​
2​2+7​​3​​
Multiply by the conjugate 2​2​​=2​2+7​​2​3​2​​
3​2​=6​
3​2​
Apply radical rule: a​b​=a⋅b​3​2​=3⋅2​=3⋅2​
Multiply the numbers: 3⋅2=6=6​
2​2+7​​2​=22+7​​
2​2+7​​2​
Apply radical rule: a​a​=a2​2​=2=22+7​​
=22+7​​6​​
Multiply by the conjugate 2+7​​2+7​​​=22+7​​2+7​​6​2+7​​​
22+7​​2+7​​=4+27​
22+7​​2+7​​
Apply radical rule: a​a​=a2+7​​2+7​​=2+7​=2(2+7​)
Apply the distributive law: a(b+c)=ab+aca=2,b=2,c=7​=2⋅2+27​
Multiply the numbers: 2⋅2=4=4+27​
=4+27​6​2+7​​​
Multiply by the conjugate 4−27​4−27​​=(4+27​)(4−27​)6​2+7​​(4−27​)​
(4+27​)(4−27​)=−12
(4+27​)(4−27​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=4,b=27​=42−(27​)2
Simplify 42−(27​)2:−12
42−(27​)2
42=16
42
42=16=16
(27​)2=28
(27​)2
Apply exponent rule: (a⋅b)n=anbn=22(7​)2
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=16−28
Subtract the numbers: 16−28=−12=−12
=−12
=−126​(4−27​)2+7​​​
Apply the fraction rule: −ba​=−ba​=−126​(4−27​)2+7​​​
Cancel 126​(4−27​)2+7​​​:66​(2−7​)2+7​​​
126​(4−27​)2+7​​​
Factor 4−27​:2(2−7​)
4−27​
Rewrite as=2⋅2−27​
Factor out common term 2=2(2−7​)
=126​⋅2(2−7​)2+7​​​
Cancel the common factor: 2=66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​
=−66​(2−7​)2+7​​​−i22+7​​​
Rewrite −66​(2−7​)2+7​​​−22+7​​​i in standard complex form: 33​(−2​2+7​​+214+77​​​)​−22+7​​​i
−66​(2−7​)2+7​​​−22+7​​​i
66​(2−7​)2+7​​​=6​22+7​​−14+77​​​
66​(2−7​)2+7​​​
Apply radical rule: 6​=621​=6621​(2−7​)2+7​​​
Apply exponent rule: xbxa​=xb−a1​61621​​=61−21​1​=61−21​(2−7​)2+7​​​
Subtract the numbers: 1−21​=21​=621​(2−7​)2+7​​​
Apply radical rule: 621​=6​=6​(2−7​)2+7​​​
Expand (2−7​)2+7​​:22+7​​−14+77​​
(2−7​)2+7​​
Apply the distributive law: a(b−c)=ab−aca=2+7​​,b=2,c=7​=2+7​​⋅2−2+7​​7​
=22+7​​−7​2+7​​
7​2+7​​=14+77​​
7​2+7​​
Apply radical rule: a​b​=a⋅b​7​2+7​​=7(2+7​)​=7(2+7​)​
Expand 7(2+7​):14+77​
7(2+7​)
Apply the distributive law: a(b+c)=ab+aca=7,b=2,c=7​=7⋅2+77​
Multiply the numbers: 7⋅2=14=14+77​
=14+77​​
=22+7​​−14+77​​
=6​22+7​​−14+77​​​
=−6​22+7​​−14+77​​​−i22+7​​​
Apply the fraction rule: ca±b​=ca​±cb​6​22+7​​−14+77​​​=−(6​22+7​​​)−(−6​14+77​​​)=−(6​22+7​​​)−(−6​14+77​​​)−i22+7​​​
Remove parentheses: (a)=a,−(−a)=a=−6​22+7​​​+6​14+77​​​−i22+7​​​
Cancel 6​22+7​​​:3​2​2+7​​​
6​22+7​​​
Factor 6​:2​3​
Factor 6=2⋅3=2⋅3​
Apply radical rule: =2​3​
=2​3​22+7​​​
Cancel 2​3​22+7​​​:3​2​2+7​​​
2​3​22+7​​​
Apply radical rule: 2​=221​=221​3​22+7​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=3​2−21​+12+7​​​
Subtract the numbers: 1−21​=21​=3​221​2+7​​​
Apply radical rule: 221​=2​=3​2​2+7​​​
=3​2​2+7​​​
=−3​2​2+7​​​+6​14+77​​​−i22+7​​​
Combine same powers : y​x​​=yx​​=−3​2​2+7​​​+614+77​​​−i22+7​​​
Group the real part and the imaginary part of the complex number=​−3​2​2+7​​​+614+77​​​​−22+7​​​i
−3​2​2+7​​​+614+77​​​=33​(−2​2+7​​+214+77​​​)​
−3​2​2+7​​​+614+77​​​
Convert element to fraction: 614+77​​​=3​614+7⋅7​​​3​​=−3​2​2+7​​​+3​614+77​​​3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​−2​2+7​​+614+77​​​3​​
614+77​​​3​=214+77​​​
614+77​​​3​
Apply radical rule: a​b​=a⋅b​3​614+77​​​=3⋅614+77​​​=3⋅614+77​​​
614+77​​⋅3=214+77​​
614+77​​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=6(14+77​)⋅3​
Cancel the common factor: 3=214+77​​
=214+77​​​
=3​−2​2+7​​+214+77​​​​
Rationalize 3​−2​2+7​​+214+77​​​​:33​(214+77​​​−2​2+7​​)​
3​−2​2+7​​+214+77​​​​
Multiply by the conjugate 3​3​​=3​3​(−2​2+7​​+214+77​​​)3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​(−2​2+7​​+214+77​​​)​
=33​(214+77​​​−2​2+7​​)​
=33​(−2​2+7​​+214+77​​​)​−22+7​​​i
=33​(−2​2+7​​+214+77​​​)​−22+7​​​i
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1+sin(2a)=sin^2(a)((cos^3(a)))/((2cos^2(a)-1))=cos(a)cos(x-45)=07tan^2(x)-15=01+cos^2(x)-2cos^2(x/2)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^4(x)+2sin^2(x)+6cos^2(x)+5=0 ?

    The general solution for cos^4(x)+2sin^2(x)+6cos^2(x)+5=0 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024