Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^3(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan3(x)=2

Solution

x=0.89990…+πn
+1
Degrees
x=51.56095…∘+180∘n
Solution steps
tan3(x)=2
Solve by substitution
tan3(x)=2
Let: tan(x)=uu3=2
u3=2:u=32​,u=−232​​+i232​3​​,u=−232​​−i232​3​​
u3=2
For x3=f(a) the solutions are x=3f(a)​,3f(a)​2−1−3​i​,3f(a)​2−1+3​i​
u=32​,u=32​2−1+3​i​,u=32​2−1−3​i​
Simplify 32​2−1+3​i​:−232​​+i232​3​​
32​2−1+3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1+3​i)32​​
Apply radical rule: na​=an1​32​=231​=2231​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−1+3​i​
Subtract the numbers: 1−31​=32​=232​−1+3​i​
Rationalize 232​−1+3​i​:232​(−1+3​i)​
232​−1+3​i​
Multiply by the conjugate 32​32​​=232​32​(−1+3​i)32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=232​(−1+3​i)​
=232​(−1+3​i)​
Rewrite 232​(−1+3​i)​ in standard complex form: −232​​+23​32​​i
232​(−1+3​i)​
Apply radical rule: na​=an1​32​=231​=2231​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−1+3​i​
Subtract the numbers: 1−31​=32​=232​−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​232​−1+3​i​=−232​1​+232​3​i​=−232​1​+232​3​i​
232​3​​=23​32​​
232​3​​
Multiply by the conjugate 32​32​​=232​32​3​32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=23​32​​
=−232​1​+23​32​​i
−232​1​=−232​​
−232​1​
Multiply by the conjugate 32​32​​=−232​32​1⋅32​​
1⋅32​=32​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=−232​​
=−232​​+23​32​​i
=−232​​+23​32​​i
Simplify 32​2−1−3​i​:−232​​−i232​3​​
32​2−1−3​i​
Multiply fractions: a⋅cb​=ca⋅b​=2(−1−3​i)32​​
Apply radical rule: na​=an1​32​=231​=2231​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−1−3​i​
Subtract the numbers: 1−31​=32​=232​−1−3​i​
Rationalize 232​−1−3​i​:232​(−1−3​i)​
232​−1−3​i​
Multiply by the conjugate 32​32​​=232​32​(−1−3​i)32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=232​(−1−3​i)​
=232​(−1−3​i)​
Rewrite 232​(−1−3​i)​ in standard complex form: −232​​−23​32​​i
232​(−1−3​i)​
Apply radical rule: na​=an1​32​=231​=2231​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=21−31​−1−3​i​
Subtract the numbers: 1−31​=32​=232​−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​232​−1−3​i​=−232​1​−232​3​i​=−232​1​−232​3​i​
−232​3​​=−23​32​​
−232​3​​
Multiply by the conjugate 32​32​​=−232​32​3​32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=−23​32​​
=−232​1​−23​32​​i
−232​1​=−232​​
−232​1​
Multiply by the conjugate 32​32​​=−232​32​1⋅32​​
1⋅32​=32​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=−232​​
=−232​​−23​32​​i
=−232​​−23​32​​i
u=32​,u=−232​​+i232​3​​,u=−232​​−i232​3​​
Substitute back u=tan(x)tan(x)=32​,tan(x)=−232​​+i232​3​​,tan(x)=−232​​−i232​3​​
tan(x)=32​,tan(x)=−232​​+i232​3​​,tan(x)=−232​​−i232​3​​
tan(x)=32​:x=arctan(32​)+πn
tan(x)=32​
Apply trig inverse properties
tan(x)=32​
General solutions for tan(x)=32​tan(x)=a⇒x=arctan(a)+πnx=arctan(32​)+πn
x=arctan(32​)+πn
tan(x)=−232​​+i232​3​​:No Solution
tan(x)=−232​​+i232​3​​
NoSolution
tan(x)=−232​​−i232​3​​:No Solution
tan(x)=−232​​−i232​3​​
NoSolution
Combine all the solutionsx=arctan(32​)+πn
Show solutions in decimal formx=0.89990…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^3(x)=3sin(x)sin3(x)=3sin(x)cos^4(x)+2sin^2(x)+6cos^2(x)+5=0cos4(x)+2sin2(x)+6cos2(x)+5=01+sin(2a)=sin^2(a)1+sin(2a)=sin2(a)((cos^3(a)))/((2cos^2(a)-1))=cos(a)(2cos2(a)−1)(cos3(a))​=cos(a)cos(x-45)=0cos(x−45∘)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^3(x)=2 ?

    The general solution for tan^3(x)=2 is x=0.89990…+pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024