Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4tan(x)sin^2(x)+3=4sin^2(x)+3tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4tan(x)sin2(x)+3=4sin2(x)+3tan(x)

Solution

x=4π​+πn,x=34π​+2πn,x=35π​+2πn,x=3π​+2πn,x=32π​+2πn
+1
Degrees
x=45∘+180∘n,x=240∘+360∘n,x=300∘+360∘n,x=60∘+360∘n,x=120∘+360∘n
Solution steps
4tan(x)sin2(x)+3=4sin2(x)+3tan(x)
Subtract 4sin2(x)+3tan(x) from both sides4sin2(x)tan(x)+3−4sin2(x)−3tan(x)=0
Factor 4sin2(x)tan(x)+3−4sin2(x)−3tan(x):(−1+tan(x))(2sin(x)+3​)(2sin(x)−3​)
4sin2(x)tan(x)+3−4sin2(x)−3tan(x)
Rewrite as=4sin2(x)tan(x)+3−1⋅4sin2(x)−3tan(x)
Factor out common term 4sin2(x)=4sin2(x)(tan(x)−1)+3−3tan(x)
Rewrite as=4sin2(x)(−1+tan(x))+3⋅1−3tan(x)
Factor out common term 3=4sin2(x)(−1+tan(x))+3(1−tan(x))
Rewrite as=4(−1+tan(x))sin2(x)−3(−1+tan(x))
Factor out common term (−1+tan(x))=(−1+tan(x))(4sin2(x)−3)
Factor 4sin2(x)−3:(2sin(x)+3​)(2sin(x)−3​)
4sin2(x)−3
Rewrite 4sin2(x)−3 as (2sin(x))2−(3​)2
4sin2(x)−3
Rewrite 4 as 22=22sin2(x)−3
Apply radical rule: a=(a​)23=(3​)2=22sin2(x)−(3​)2
Apply exponent rule: ambm=(ab)m22sin2(x)=(2sin(x))2=(2sin(x))2−(3​)2
=(2sin(x))2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2sin(x))2−(3​)2=(2sin(x)+3​)(2sin(x)−3​)=(2sin(x)+3​)(2sin(x)−3​)
=(tan(x)−1)(2sin(x)+3​)(2sin(x)−3​)
(−1+tan(x))(2sin(x)+3​)(2sin(x)−3​)=0
Solving each part separately−1+tan(x)=0or2sin(x)+3​=0or2sin(x)−3​=0
−1+tan(x)=0:x=4π​+πn
−1+tan(x)=0
Move 1to the right side
−1+tan(x)=0
Add 1 to both sides−1+tan(x)+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
2sin(x)+3​=0:x=34π​+2πn,x=35π​+2πn
2sin(x)+3​=0
Move 3​to the right side
2sin(x)+3​=0
Subtract 3​ from both sides2sin(x)+3​−3​=0−3​
Simplify2sin(x)=−3​
2sin(x)=−3​
Divide both sides by 2
2sin(x)=−3​
Divide both sides by 222sin(x)​=2−3​​
Simplifysin(x)=−23​​
sin(x)=−23​​
General solutions for sin(x)=−23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=34π​+2πn,x=35π​+2πn
x=34π​+2πn,x=35π​+2πn
2sin(x)−3​=0:x=3π​+2πn,x=32π​+2πn
2sin(x)−3​=0
Move 3​to the right side
2sin(x)−3​=0
Add 3​ to both sides2sin(x)−3​+3​=0+3​
Simplify2sin(x)=3​
2sin(x)=3​
Divide both sides by 2
2sin(x)=3​
Divide both sides by 222sin(x)​=23​​
Simplifysin(x)=23​​
sin(x)=23​​
General solutions for sin(x)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
Combine all the solutionsx=4π​+πn,x=34π​+2πn,x=35π​+2πn,x=3π​+2πn,x=32π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(a)=0.384cos(b)= 38/70cos(x)=1-sin^2(x/2)3sin(x)-4sin^3(x)=1-2sin^2(x)sin^2(a)=((2tan(a)))/((1+tan^2(a)))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024