Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(a)=((2tan(a)))/((1+tan^2(a)))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(a)=(1+tan2(a))(2tan(a))​

Solution

a=2πn,a=π+2πn,a=1.10714…+πn
+1
Degrees
a=0∘+360∘n,a=180∘+360∘n,a=63.43494…∘+180∘n
Solution steps
sin2(a)=(1+tan2(a))(2tan(a))​
Subtract 1+tan2(a)2tan(a)​ from both sidessin2(a)−1+tan2(a)2tan(a)​=0
Simplify sin2(a)−1+tan2(a)2tan(a)​:1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​
sin2(a)−1+tan2(a)2tan(a)​
Convert element to fraction: sin2(a)=1+tan2(a)sin2(a)(1+tan2(a))​=1+tan2(a)sin2(a)(1+tan2(a))​−1+tan2(a)2tan(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​
1+tan2(a)sin2(a)(1+tan2(a))−2tan(a)​=0
g(x)f(x)​=0⇒f(x)=0sin2(a)(1+tan2(a))−2tan(a)=0
Express with sin, cos
(1+tan2(a))sin2(a)−2tan(a)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=(1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​
Simplify (1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​:cos2(a)sin2(a)(cos2(a)+sin2(a))−2sin(a)cos(a)​
(1+(cos(a)sin(a)​)2)sin2(a)−2⋅cos(a)sin(a)​
(1+(cos(a)sin(a)​)2)sin2(a)=cos2(a)cos2(a)+sin2(a)​sin2(a)
(1+(cos(a)sin(a)​)2)sin2(a)
Apply exponent rule: (ba​)c=bcac​=sin2(a)(cos2(a)sin2(a)​+1)
Join 1+cos2(a)sin2(a)​:cos2(a)cos2(a)+sin2(a)​
1+cos2(a)sin2(a)​
Convert element to fraction: 1=cos2(a)1cos2(a)​=cos2(a)1⋅cos2(a)​+cos2(a)sin2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(a)1⋅cos2(a)+sin2(a)​
Multiply: 1⋅cos2(a)=cos2(a)=cos2(a)cos2(a)+sin2(a)​
=cos2(a)cos2(a)+sin2(a)​sin2(a)
2⋅cos(a)sin(a)​=cos(a)2sin(a)​
2⋅cos(a)sin(a)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(a)sin(a)⋅2​
=cos2(a)cos2(a)+sin2(a)​sin2(a)−cos(a)2sin(a)​
Multiply cos2(a)cos2(a)+sin2(a)​sin2(a):cos2(a)sin2(a)(cos2(a)+sin2(a))​
cos2(a)cos2(a)+sin2(a)​sin2(a)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(a)(cos2(a)+sin2(a))sin2(a)​
=cos2(a)(cos2(a)+sin2(a))sin2(a)​−cos(a)sin(a)⋅2​
Least Common Multiplier of cos2(a),cos(a):cos2(a)
cos2(a),cos(a)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos2(a) or cos(a)=cos2(a)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(a)
For cos(a)sin(a)⋅2​:multiply the denominator and numerator by cos(a)cos(a)sin(a)⋅2​=cos(a)cos(a)sin(a)⋅2cos(a)​=cos2(a)sin(a)⋅2cos(a)​
=cos2(a)(cos2(a)+sin2(a))sin2(a)​−cos2(a)sin(a)⋅2cos(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(a)(cos2(a)+sin2(a))sin2(a)−sin(a)⋅2cos(a)​
=cos2(a)sin2(a)(cos2(a)+sin2(a))−2sin(a)cos(a)​
cos2(a)(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)​=0
g(x)f(x)​=0⇒f(x)=0(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)=0
Factor (cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a):sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))
(cos2(a)+sin2(a))sin2(a)−2cos(a)sin(a)
Apply exponent rule: ab+c=abacsin2(a)=sin(a)sin(a)=(cos2(a)+sin(a)sin(a))sin(a)sin(a)−2cos(a)sin(a)
Factor out common term sin(a)=sin(a)((cos2(a)+sin2(a))sin(a)−2cos(a))
sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))=0
Rewrite using trig identities
sin(a)(sin(a)(cos2(a)+sin2(a))−2cos(a))
Use the Pythagorean identity: cos2(x)+sin2(x)=1=sin(a)(−2cos(a)+sin(a)⋅1)
Simplify sin(a)(−2cos(a)+sin(a)⋅1):sin(a)(−2cos(a)+sin(a))
sin(a)(−2cos(a)+sin(a)⋅1)
Multiply: sin(a)⋅1=sin(a)=sin(a)(sin(a)−2cos(a))
=sin(a)(−2cos(a)+sin(a))
sin(a)(−2cos(a)+sin(a))=0
Solving each part separatelysin(a)=0or−2cos(a)+sin(a)=0
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Solve a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
−2cos(a)+sin(a)=0:a=arctan(2)+πn
−2cos(a)+sin(a)=0
Rewrite using trig identities
−2cos(a)+sin(a)=0
Divide both sides by cos(a),cos(a)=0cos(a)−2cos(a)+sin(a)​=cos(a)0​
Simplify−2+cos(a)sin(a)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−2+tan(a)=0
−2+tan(a)=0
Move 2to the right side
−2+tan(a)=0
Add 2 to both sides−2+tan(a)+2=0+2
Simplifytan(a)=2
tan(a)=2
Apply trig inverse properties
tan(a)=2
General solutions for tan(a)=2tan(x)=a⇒x=arctan(a)+πna=arctan(2)+πn
a=arctan(2)+πn
Combine all the solutionsa=2πn,a=π+2πn,a=arctan(2)+πn
Show solutions in decimal forma=2πn,a=π+2πn,a=1.10714…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(tan(a))/2 = 2/11sin^2(x)-cos(x)= 1/2cos(x)[3sin(x)-2]=0sin^3(x)+sin(x)-4=0solvefor a,sin^2(a)+cos^2(b)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^2(a)=((2tan(a)))/((1+tan^2(a))) ?

    The general solution for sin^2(a)=((2tan(a)))/((1+tan^2(a))) is a=2pin,a=pi+2pin,a=1.10714…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024