Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin(x)-4sin^3(x)=1-2sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin(x)−4sin3(x)=1−2sin2(x)

Solution

x=2π​+2πn,x=0.31415…+2πn,x=π−0.31415…+2πn,x=−0.94247…+2πn,x=π+0.94247…+2πn
+1
Degrees
x=90∘+360∘n,x=18∘+360∘n,x=162∘+360∘n,x=−54∘+360∘n,x=234∘+360∘n
Solution steps
3sin(x)−4sin3(x)=1−2sin2(x)
Solve by substitution
3sin(x)−4sin3(x)=1−2sin2(x)
Let: sin(x)=u3u−4u3=1−2u2
3u−4u3=1−2u2:u=1,u=4−1+5​​,u=−41+5​​
3u−4u3=1−2u2
Move 2u2to the left side
3u−4u3=1−2u2
Add 2u2 to both sides3u−4u3+2u2=1−2u2+2u2
Simplify3u−4u3+2u2=1
3u−4u3+2u2=1
Move 1to the left side
3u−4u3+2u2=1
Subtract 1 from both sides3u−4u3+2u2−1=1−1
Simplify3u−4u3+2u2−1=0
3u−4u3+2u2−1=0
Write in the standard form an​xn+…+a1​x+a0​=0−4u3+2u2+3u−1=0
Factor −4u3+2u2+3u−1:−(u−1)(4u2+2u−1)
−4u3+2u2+3u−1
Factor out common term −1=−(4u3−2u2−3u+1)
Factor 4u3−2u2−3u+1:(u−1)(4u2+2u−1)
4u3−2u2−3u+1
Use the rational root theorem
a0​=1,an​=4
The dividers of a0​:1,The dividers of an​:1,2,4
Therefore, check the following rational numbers:±1,2,41​
11​ is a root of the expression, so factor out u−1
=(u−1)u−14u3−2u2−3u+1​
u−14u3−2u2−3u+1​=4u2+2u−1
u−14u3−2u2−3u+1​
Divide u−14u3−2u2−3u+1​:u−14u3−2u2−3u+1​=4u2+u−12u2−3u+1​
Divide the leading coefficients of the numerator 4u3−2u2−3u+1
and the divisor u−1:u4u3​=4u2
Quotient=4u2
Multiply u−1 by 4u2:4u3−4u2Subtract 4u3−4u2 from 4u3−2u2−3u+1 to get new remainderRemainder=2u2−3u+1
Thereforeu−14u3−2u2−3u+1​=4u2+u−12u2−3u+1​
=4u2+u−12u2−3u+1​
Divide u−12u2−3u+1​:u−12u2−3u+1​=2u+u−1−u+1​
Divide the leading coefficients of the numerator 2u2−3u+1
and the divisor u−1:u2u2​=2u
Quotient=2u
Multiply u−1 by 2u:2u2−2uSubtract 2u2−2u from 2u2−3u+1 to get new remainderRemainder=−u+1
Thereforeu−12u2−3u+1​=2u+u−1−u+1​
=4u2+2u+u−1−u+1​
Divide u−1−u+1​:u−1−u+1​=−1
Divide the leading coefficients of the numerator −u+1
and the divisor u−1:u−u​=−1
Quotient=−1
Multiply u−1 by −1:−u+1Subtract −u+1 from −u+1 to get new remainderRemainder=0
Thereforeu−1−u+1​=−1
=4u2+2u−1
=4u2+2u−1
=(u−1)(4u2+2u−1)
=−(u−1)(4u2+2u−1)
−(u−1)(4u2+2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0or4u2+2u−1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve 4u2+2u−1=0:u=4−1+5​​,u=−41+5​​
4u2+2u−1=0
Solve with the quadratic formula
4u2+2u−1=0
Quadratic Equation Formula:
For a=4,b=2,c=−1u1,2​=2⋅4−2±22−4⋅4(−1)​​
u1,2​=2⋅4−2±22−4⋅4(−1)​​
22−4⋅4(−1)​=25​
22−4⋅4(−1)​
Apply rule −(−a)=a=22+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22+16​
22=4=4+16​
Add the numbers: 4+16=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
u1,2​=2⋅4−2±25​​
Separate the solutionsu1​=2⋅4−2+25​​,u2​=2⋅4−2−25​​
u=2⋅4−2+25​​:4−1+5​​
2⋅4−2+25​​
Multiply the numbers: 2⋅4=8=8−2+25​​
Factor −2+25​:2(−1+5​)
−2+25​
Rewrite as=−2⋅1+25​
Factor out common term 2=2(−1+5​)
=82(−1+5​)​
Cancel the common factor: 2=4−1+5​​
u=2⋅4−2−25​​:−41+5​​
2⋅4−2−25​​
Multiply the numbers: 2⋅4=8=8−2−25​​
Factor −2−25​:−2(1+5​)
−2−25​
Rewrite as=−2⋅1−25​
Factor out common term 2=−2(1+5​)
=−82(1+5​)​
Cancel the common factor: 2=−41+5​​
The solutions to the quadratic equation are:u=4−1+5​​,u=−41+5​​
The solutions areu=1,u=4−1+5​​,u=−41+5​​
Substitute back u=sin(x)sin(x)=1,sin(x)=4−1+5​​,sin(x)=−41+5​​
sin(x)=1,sin(x)=4−1+5​​,sin(x)=−41+5​​
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=4−1+5​​:x=arcsin(4−1+5​​)+2πn,x=π−arcsin(4−1+5​​)+2πn
sin(x)=4−1+5​​
Apply trig inverse properties
sin(x)=4−1+5​​
General solutions for sin(x)=4−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(4−1+5​​)+2πn,x=π−arcsin(4−1+5​​)+2πn
x=arcsin(4−1+5​​)+2πn,x=π−arcsin(4−1+5​​)+2πn
sin(x)=−41+5​​:x=arcsin(−41+5​​)+2πn,x=π+arcsin(41+5​​)+2πn
sin(x)=−41+5​​
Apply trig inverse properties
sin(x)=−41+5​​
General solutions for sin(x)=−41+5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−41+5​​)+2πn,x=π+arcsin(41+5​​)+2πn
x=arcsin(−41+5​​)+2πn,x=π+arcsin(41+5​​)+2πn
Combine all the solutionsx=2π​+2πn,x=arcsin(4−1+5​​)+2πn,x=π−arcsin(4−1+5​​)+2πn,x=arcsin(−41+5​​)+2πn,x=π+arcsin(41+5​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=0.31415…+2πn,x=π−0.31415…+2πn,x=−0.94247…+2πn,x=π+0.94247…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(a)=((2tan(a)))/((1+tan^2(a)))(tan(a))/2 = 2/11sin^2(x)-cos(x)= 1/2cos(x)[3sin(x)-2]=0sin^3(x)+sin(x)-4=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024