Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x/3)+arctan(x/2)=arctan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(3x​)+arctan(2x​)=arctan(x)

Solution

x=0,x=−1,x=1
Solution steps
arctan(3x​)+arctan(2x​)=arctan(x)
Subtract arctan(x) from both sidesarctan(3x​)+arctan(2x​)−arctan(x)=0
Rewrite using trig identities
−arctan(x)+arctan(1−3x​⋅2x​3x​+2x​​)
Use the Sum to Product identity: arctan(s)−arctan(t)=arctan(1+sts−t​)=arctan​1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​​
arctan​1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​​=0
Apply trig inverse properties
arctan​1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​​=0
arctan(x)=a⇒x=tan(a)1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​=tan(0)
tan(0)=0
tan(0)
Use the following trivial identity:tan(0)=0
tan(0)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=0
=0
1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​=0
1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​=0
Solve 1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​=0:x=0,x=−1,x=1
1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​=0
Simplify 1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​:6+4x2−x+x3​
1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​
1−3x​⋅2x​3x​+2x​​x=6−x25x2​
1−3x​⋅2x​3x​+2x​​x
1−3x​⋅2x​3x​+2x​​=6⋅66−x2​5x​
1−3x​⋅2x​3x​+2x​​
3x​⋅2x​=6x2​
3x​⋅2x​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=3⋅2xx​
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=3⋅2x2​
Multiply the numbers: 3⋅2=6=6x2​
=1−6x2​3x​+2x​​
Join 3x​+2x​:65x​
3x​+2x​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3x​:multiply the denominator and numerator by 23x​=3⋅2x⋅2​=6x⋅2​
For 2x​:multiply the denominator and numerator by 32x​=2⋅3x⋅3​=6x⋅3​
=6x⋅2​+6x⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6x⋅2+x⋅3​
Add similar elements: 2x+3x=5x=65x​
=1−6x2​65x​​
Apply the fraction rule: acb​​=c⋅ab​=6(1−6x2​)5x​
Join 1−6x2​:66−x2​
1−6x2​
Convert element to fraction: 1=61⋅6​=61⋅6​−6x2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=61⋅6−x2​
Multiply the numbers: 1⋅6=6=66−x2​
=6⋅6−x2+6​5x​
=6⋅6−x2+6​5x​x
Multiply fractions: a⋅cb​=ca⋅b​=6⋅66−x2​5xx​
5xx=5x2
5xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=5x1+1
Add the numbers: 1+1=2=5x2
=6⋅6−x2+6​5x2​
Multiply 6⋅66−x2​:6−x2
6⋅66−x2​
Multiply fractions: a⋅cb​=ca⋅b​=6(6−x2)⋅6​
Cancel the common factor: 6=6−x2
=6−x25x2​
=1+−x2+65x2​−3x​⋅2x​+13x​+2x​​−x​
1−3x​⋅2x​3x​+2x​​=6⋅66−x2​5x​
1−3x​⋅2x​3x​+2x​​
3x​⋅2x​=6x2​
3x​⋅2x​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=3⋅2xx​
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=3⋅2x2​
Multiply the numbers: 3⋅2=6=6x2​
=1−6x2​3x​+2x​​
Join 3x​+2x​:65x​
3x​+2x​
Least Common Multiplier of 3,2:6
3,2
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 3 or 2=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 3x​:multiply the denominator and numerator by 23x​=3⋅2x⋅2​=6x⋅2​
For 2x​:multiply the denominator and numerator by 32x​=2⋅3x⋅3​=6x⋅3​
=6x⋅2​+6x⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6x⋅2+x⋅3​
Add similar elements: 2x+3x=5x=65x​
=1−6x2​65x​​
Apply the fraction rule: acb​​=c⋅ab​=6(1−6x2​)5x​
Join 1−6x2​:66−x2​
1−6x2​
Convert element to fraction: 1=61⋅6​=61⋅6​−6x2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=61⋅6−x2​
Multiply the numbers: 1⋅6=6=66−x2​
=6⋅6−x2+6​5x​
=1+−x2+65x2​6⋅6−x2+6​5x​−x​
Join 1+6−x25x2​:6−x26+4x2​
1+6−x25x2​
Convert element to fraction: 1=6−x21(6−x2)​=6−x21⋅(6−x2)​+6−x25x2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−x21⋅(6−x2)+5x2​
1⋅(6−x2)+5x2=6+4x2
1⋅(6−x2)+5x2
1⋅(6−x2)=6−x2
1⋅(6−x2)
Multiply: 1⋅(6−x2)=(6−x2)=(6−x2)
Remove parentheses: (a)=a=6−x2
=6−x2+5x2
Add similar elements: −x2+5x2=4x2=6+4x2
=6−x26+4x2​
=6−x26+4x2​6⋅6−x2+6​5x​−x​
Join 6⋅66−x2​5x​−x:6−x2−x+x3​
6⋅66−x2​5x​−x
Convert element to fraction: x=666−x2​x666−x2​​=6⋅66−x2​5x​−6⋅66−x2​x⋅6⋅66−x2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6⋅66−x2​5x−x⋅6⋅66−x2​​
Multiply 6⋅66−x2​:6−x2
6⋅66−x2​
Multiply fractions: a⋅cb​=ca⋅b​=6(6−x2)⋅6​
Cancel the common factor: 6=6−x2
=6−x25x−6⋅6−x2+6​x​
x⋅6⋅66−x2​=x(6−x2)
x⋅6⋅66−x2​
Multiply fractions: a⋅cb​=ca⋅b​=6(6−x2)x⋅6​
Cancel the common factor: 6=(6−x2)x
=6−x25x−x(−x2+6)​
Expand 5x−(6−x2)x:−x+x3
5x−(6−x2)x
=5x−x(6−x2)
Expand −x(6−x2):−6x+x3
−x(6−x2)
Apply the distributive law: a(b−c)=ab−aca=−x,b=6,c=x2=−x⋅6−(−x)x2
Apply minus-plus rules−(−a)=a=−6x+x2x
x2x=x3
x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=x2+1
Add the numbers: 2+1=3=x3
=−6x+x3
=5x−6x+x3
Add similar elements: 5x−6x=−x=−x+x3
=6−x2−x+x3​
=6−x26+4x2​6−x2−x+x3​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=(6−x2)(6+4x2)(−x+x3)(6−x2)​
Cancel the common factor: 6−x2=6+4x2−x+x3​
6+4x2−x+x3​=0
g(x)f(x)​=0⇒f(x)=0−x+x3=0
Solve −x+x3=0:x=0,x=−1,x=1
−x+x3=0
Factor −x+x3:x(x+1)(x−1)
−x+x3
Factor out common term x:x(x2−1)
x3−x
Apply exponent rule: ab+c=abacx3=x2x=x2x−x
Factor out common term x=x(x2−1)
=x(x2−1)
Factor x2−1:(x+1)(x−1)
x2−1
Rewrite 1 as 12=x2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)x2−12=(x+1)(x−1)=(x+1)(x−1)
=x(x+1)(x−1)
x(x+1)(x−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0x=0orx+1=0orx−1=0
Solve x+1=0:x=−1
x+1=0
Move 1to the right side
x+1=0
Subtract 1 from both sidesx+1−1=0−1
Simplifyx=−1
x=−1
Solve x−1=0:x=1
x−1=0
Move 1to the right side
x−1=0
Add 1 to both sidesx−1+1=0+1
Simplifyx=1
x=1
The solutions arex=0,x=−1,x=1
x=0,x=−1,x=1
Verify Solutions
Find undefined (singularity) points:x=6​,x=−6​
Take the denominator(s) of 1+1−3x​⋅2x​3x​+2x​​x1−3x​⋅2x​3x​+2x​​−x​ and compare to zero
Solve 1−3x​⋅2x​=0:x=6​,x=−6​
1−3x​⋅2x​=0
Move 1to the right side
1−3x​⋅2x​=0
Subtract 1 from both sides1−3x​⋅2x​−1=0−1
Simplify−3x​⋅2x​=−1
−3x​⋅2x​=−1
Simplify−6x2​=−1
Multiply both sides by −6(−6x2​)(−6)=(−1)(−6)
x2=6
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=6​,x=−6​
The following points are undefinedx=6​,x=−6​
Combine undefined points with solutions:
x=0,x=−1,x=1
x=0,x=−1,x=1
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(3x​)+arctan(2x​)=arctan(x)
Remove the ones that don't agree with the equation.
Check the solution 0:True
0
Plug in n=10
For arctan(3x​)+arctan(2x​)=arctan(x)plug inx=0arctan(30​)+arctan(20​)=arctan(0)
Refine0=0
⇒True
Check the solution −1:True
−1
Plug in n=1−1
For arctan(3x​)+arctan(2x​)=arctan(x)plug inx=−1arctan(3−1​)+arctan(2−1​)=arctan(−1)
Refine−0.78539…=−0.78539…
⇒True
Check the solution 1:True
1
Plug in n=11
For arctan(3x​)+arctan(2x​)=arctan(x)plug inx=1arctan(31​)+arctan(21​)=arctan(1)
Refine0.78539…=0.78539…
⇒True
x=0,x=−1,x=1

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor w,y=arctan(1+4w)cos(8x)=1cos^4(a)=8cos^4(a)-8cos^2(a)+1sin^2(a)-4sin(a)+3=04sin^2(x)-4cos(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x/3)+arctan(x/2)=arctan(x) ?

    The general solution for arctan(x/3)+arctan(x/2)=arctan(x) is x=0,x=-1,x=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024