Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

((1+cos^2(a)))/(sin^2(a))= 5/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(a)(1+cos2(a))​=35​

Solution

a=3π​+2πn,a=32π​+2πn,a=34π​+2πn,a=35π​+2πn
+1
Degrees
a=60∘+360∘n,a=120∘+360∘n,a=240∘+360∘n,a=300∘+360∘n
Solution steps
sin2(a)(1+cos2(a))​=35​
Subtract 35​ from both sidessin2(a)1+cos2(a)​−35​=0
Simplify sin2(a)1+cos2(a)​−35​:3sin2(a)3(1+cos2(a))−5sin2(a)​
sin2(a)1+cos2(a)​−35​
Least Common Multiplier of sin2(a),3:3sin2(a)
sin2(a),3
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin2(a) or 3=3sin2(a)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3sin2(a)
For sin2(a)1+cos2(a)​:multiply the denominator and numerator by 3sin2(a)1+cos2(a)​=sin2(a)⋅3(1+cos2(a))⋅3​
For 35​:multiply the denominator and numerator by sin2(a)35​=3sin2(a)5sin2(a)​
=sin2(a)⋅3(1+cos2(a))⋅3​−3sin2(a)5sin2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3sin2(a)(1+cos2(a))⋅3−5sin2(a)​
3sin2(a)3(1+cos2(a))−5sin2(a)​=0
g(x)f(x)​=0⇒f(x)=03(1+cos2(a))−5sin2(a)=0
Rewrite using trig identities
(1+cos2(a))⋅3−5sin2(a)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1+1−sin2(a))⋅3−5sin2(a)
Simplify (1+1−sin2(a))⋅3−5sin2(a):−8sin2(a)+6
(1+1−sin2(a))⋅3−5sin2(a)
Add the numbers: 1+1=2=3(−sin2(a)+2)−5sin2(a)
Expand 3(−sin2(a)+2):−3sin2(a)+6
3(−sin2(a)+2)
Apply the distributive law: a(b+c)=ab+aca=3,b=−sin2(a),c=2=3(−sin2(a))+3⋅2
Apply minus-plus rules+(−a)=−a=−3sin2(a)+3⋅2
Multiply the numbers: 3⋅2=6=−3sin2(a)+6
=−3sin2(a)+6−5sin2(a)
Simplify −3sin2(a)+6−5sin2(a):−8sin2(a)+6
−3sin2(a)+6−5sin2(a)
Group like terms=−3sin2(a)−5sin2(a)+6
Add similar elements: −3sin2(a)−5sin2(a)=−8sin2(a)=−8sin2(a)+6
=−8sin2(a)+6
=−8sin2(a)+6
6−8sin2(a)=0
Solve by substitution
6−8sin2(a)=0
Let: sin(a)=u6−8u2=0
6−8u2=0:u=23​​,u=−23​​
6−8u2=0
Move 6to the right side
6−8u2=0
Subtract 6 from both sides6−8u2−6=0−6
Simplify−8u2=−6
−8u2=−6
Divide both sides by −8
−8u2=−6
Divide both sides by −8−8−8u2​=−8−6​
Simplify
−8−8u2​=−8−6​
Simplify −8−8u2​:u2
−8−8u2​
Apply the fraction rule: −b−a​=ba​=88u2​
Divide the numbers: 88​=1=u2
Simplify −8−6​:43​
−8−6​
Apply the fraction rule: −b−a​=ba​=86​
Cancel the common factor: 2=43​
u2=43​
u2=43​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
Substitute back u=sin(a)sin(a)=23​​,sin(a)=−23​​
sin(a)=23​​,sin(a)=−23​​
sin(a)=23​​:a=3π​+2πn,a=32π​+2πn
sin(a)=23​​
General solutions for sin(a)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=3π​+2πn,a=32π​+2πn
a=3π​+2πn,a=32π​+2πn
sin(a)=−23​​:a=34π​+2πn,a=35π​+2πn
sin(a)=−23​​
General solutions for sin(a)=−23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=34π​+2πn,a=35π​+2πn
a=34π​+2πn,a=35π​+2πn
Combine all the solutionsa=3π​+2πn,a=32π​+2πn,a=34π​+2πn,a=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

d^2+13d+36=(sin^2(x))/2(tan^2(x)-4)/(cos(x)+5)=0cot^2(x)=sec^2(x)-1(cos^2(a)-1)/(sin^2(a)+1)=07sin^2(x)+2sin^2(x)-3cos^2(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024