解答
1+cot2(x)cos2(x)+1=1
解答
x=2π+2πn,x=23π+2πn
+1
度数
x=90∘+360∘n,x=270∘+360∘n求解步骤
1+cot2(x)cos2(x)+1=1
两边减去 11+cot2(x)cos2(x)+1−1=0
化简 1+cot2(x)cos2(x)+1−1:1+cot2(x)cos2(x)−cot2(x)
1+cot2(x)cos2(x)+1−1
将项转换为分式: 1=1+cot2(x)1(1+cot2(x))=1+cot2(x)cos2(x)+1−1+cot2(x)1⋅(1+cot2(x))
因为分母相等,所以合并分式: ca±cb=ca±b=1+cot2(x)cos2(x)+1−1⋅(1+cot2(x))
乘以:1⋅(1+cot2(x))=(1+cot2(x))=1+cot2(x)cos2(x)+1−(cot2(x)+1)
乘开 cos2(x)+1−(1+cot2(x)):cos2(x)−cot2(x)
cos2(x)+1−(1+cot2(x))
−(1+cot2(x)):−1−cot2(x)
−(1+cot2(x))
打开括号=−(1)−(cot2(x))
使用加减运算法则+(−a)=−a=−1−cot2(x)
=cos2(x)+1−1−cot2(x)
1−1=0=cos2(x)−cot2(x)
=1+cot2(x)cos2(x)−cot2(x)
1+cot2(x)cos2(x)−cot2(x)=0
g(x)f(x)=0⇒f(x)=0cos2(x)−cot2(x)=0
分解 cos2(x)−cot2(x):(cos(x)+cot(x))(cos(x)−cot(x))
cos2(x)−cot2(x)
使用平方差公式: x2−y2=(x+y)(x−y)cos2(x)−cot2(x)=(cos(x)+cot(x))(cos(x)−cot(x))=(cos(x)+cot(x))(cos(x)−cot(x))
(cos(x)+cot(x))(cos(x)−cot(x))=0
分别求解每个部分cos(x)+cot(x)=0orcos(x)−cot(x)=0
cos(x)+cot(x)=0:x=2π+2πn,x=23π+2πn
cos(x)+cot(x)=0
用 sin, cos 表示
cos(x)+cot(x)
使用基本三角恒等式: cot(x)=sin(x)cos(x)=cos(x)+sin(x)cos(x)
化简 cos(x)+sin(x)cos(x):sin(x)cos(x)sin(x)+cos(x)
cos(x)+sin(x)cos(x)
将项转换为分式: cos(x)=sin(x)cos(x)sin(x)=sin(x)cos(x)sin(x)+sin(x)cos(x)
因为分母相等,所以合并分式: ca±cb=ca±b=sin(x)cos(x)sin(x)+cos(x)
=sin(x)cos(x)sin(x)+cos(x)
sin(x)cos(x)+cos(x)sin(x)=0
g(x)f(x)=0⇒f(x)=0cos(x)+cos(x)sin(x)=0
分解 cos(x)+cos(x)sin(x):cos(x)(sin(x)+1)
cos(x)+cos(x)sin(x)
因式分解出通项 cos(x)=cos(x)(1+sin(x))
cos(x)(sin(x)+1)=0
分别求解每个部分cos(x)=0orsin(x)+1=0
cos(x)=0:x=2π+2πn,x=23π+2πn
cos(x)=0
cos(x)=0的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=2π+2πn,x=23π+2πn
x=2π+2πn,x=23π+2πn
sin(x)+1=0:x=23π+2πn
sin(x)+1=0
将 1到右边
sin(x)+1=0
两边减去 1sin(x)+1−1=0−1
化简sin(x)=−1
sin(x)=−1
sin(x)=−1的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=23π+2πn
x=23π+2πn
合并所有解x=2π+2πn,x=23π+2πn
cos(x)−cot(x)=0:x=2π+2πn,x=23π+2πn
cos(x)−cot(x)=0
用 sin, cos 表示
cos(x)−cot(x)
使用基本三角恒等式: cot(x)=sin(x)cos(x)=cos(x)−sin(x)cos(x)
化简 cos(x)−sin(x)cos(x):sin(x)cos(x)sin(x)−cos(x)
cos(x)−sin(x)cos(x)
将项转换为分式: cos(x)=sin(x)cos(x)sin(x)=sin(x)cos(x)sin(x)−sin(x)cos(x)
因为分母相等,所以合并分式: ca±cb=ca±b=sin(x)cos(x)sin(x)−cos(x)
=sin(x)cos(x)sin(x)−cos(x)
sin(x)−cos(x)+cos(x)sin(x)=0
g(x)f(x)=0⇒f(x)=0−cos(x)+cos(x)sin(x)=0
分解 −cos(x)+cos(x)sin(x):cos(x)(sin(x)−1)
−cos(x)+cos(x)sin(x)
因式分解出通项 cos(x)=cos(x)(−1+sin(x))
cos(x)(sin(x)−1)=0
分别求解每个部分cos(x)=0orsin(x)−1=0
cos(x)=0:x=2π+2πn,x=23π+2πn
cos(x)=0
cos(x)=0的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=2π+2πn,x=23π+2πn
x=2π+2πn,x=23π+2πn
sin(x)−1=0:x=2π+2πn
sin(x)−1=0
将 1到右边
sin(x)−1=0
两边加上 1sin(x)−1+1=0+1
化简sin(x)=1
sin(x)=1
sin(x)=1的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=2π+2πn
x=2π+2πn
合并所有解x=2π+2πn,x=23π+2πn
合并所有解x=2π+2πn,x=23π+2πn