Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x+2)=arcsin(7/25)+arccos(4/5)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x+2)=arcsin(257​)+arccos(54​)

Solution

x=−32​
Solution steps
arctan(x+2)=arcsin(257​)+arccos(54​)
Apply trig inverse properties
arctan(x+2)=arcsin(257​)+arccos(54​)
arctan(x)=a⇒x=tan(a)x+2=tan(arcsin(257​)+arccos(54​))
tan(arcsin(257​)+arccos(54​))=34​
tan(arcsin(257​)+arccos(54​))
Rewrite using trig identities:1−tan(arcsin(257​))tan(arccos(54​))tan(arcsin(257​))+tan(arccos(54​))​
tan(arcsin(257​)+arccos(54​))
Use the Angle Sum identity: tan(s+t)=1−tan(s)tan(t)tan(s)+tan(t)​=1−tan(arcsin(257​))tan(arccos(54​))tan(arcsin(257​))+tan(arccos(54​))​
=1−tan(arcsin(257​))tan(arccos(54​))tan(arcsin(257​))+tan(arccos(54​))​
Rewrite using trig identities:tan(arcsin(257​))=247​
tan(arcsin(257​))
Rewrite using trig identities:tan(arcsin(257​))=1−(257​)2(257​)1−(257​)2​​
Use the following identity: tan(arcsin(x))=1−x2x1−x2​​
=1−(257​)2(257​)1−(257​)2​​
=1−(257​)2257​1−(257​)2​​
Simplify=247​
Rewrite using trig identities:tan(arccos(54​))=43​
tan(arccos(54​))
Rewrite using trig identities:tan(arccos(54​))=(54​)1−(54​)2​​
Use the following identity: tan(arccos(x))=x1−x2​​
=(54​)1−(54​)2​​
=54​1−(54​)2​​
Simplify=43​
=1−247​⋅43​247​+43​​
Simplify 1−247​⋅43​247​+43​​:34​
1−247​⋅43​247​+43​​
247​⋅43​=327​
247​⋅43​
Cross-cancel common factor: 3
3,24
Greatest Common Divisor (GCD)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 24:2⋅2⋅2⋅3
24
24divides by 224=12⋅2=2⋅12
12divides by 212=6⋅2=2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3
The prime factors common to 3,24 are =3
=87​⋅41​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=8⋅47⋅1​
Multiply the numbers: 7⋅1=7=8⋅47​
Multiply the numbers: 8⋅4=32=327​
=1−327​247​+43​​
Join 247​+43​:2425​
247​+43​
Least Common Multiplier of 24,4:24
24,4
Least Common Multiplier (LCM)
Prime factorization of 24:2⋅2⋅2⋅3
24
24divides by 224=12⋅2=2⋅12
12divides by 212=6⋅2=2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 24 or 4=2⋅2⋅2⋅3
Multiply the numbers: 2⋅2⋅2⋅3=24=24
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 24
For 43​:multiply the denominator and numerator by 643​=4⋅63⋅6​=2418​
=247​+2418​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=247+18​
Add the numbers: 7+18=25=2425​
=1−327​2425​​
Apply the fraction rule: acb​​=c⋅ab​=24(1−327​)25​
Join 1−327​:3225​
1−327​
Convert element to fraction: 1=321⋅32​=321⋅32​−327​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=321⋅32−7​
1⋅32−7=25
1⋅32−7
Multiply the numbers: 1⋅32=32=32−7
Subtract the numbers: 32−7=25=25
=3225​
=24⋅3225​25​
Multiply 24⋅3225​:475​
24⋅3225​
Multiply fractions: a⋅cb​=ca⋅b​=3225⋅24​
Multiply the numbers: 25⋅24=600=32600​
Cancel the common factor: 8=475​
=475​25​
Apply the fraction rule: cb​a​=ba⋅c​=7525⋅4​
Multiply the numbers: 25⋅4=100=75100​
Cancel the common factor: 25=34​
=34​
x+2=34​
x+2=34​
Solve x+2=34​:x=−32​
x+2=34​
Move 2to the right side
x+2=34​
Subtract 2 from both sidesx+2−2=34​−2
Simplify
x+2−2=34​−2
Simplify x+2−2:x
x+2−2
Add similar elements: 2−2=0
=x
Simplify 34​−2:−32​
34​−2
Convert element to fraction: 2=32⋅3​=−32⋅3​+34​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−2⋅3+4​
−2⋅3+4=−2
−2⋅3+4
Multiply the numbers: 2⋅3=6=−6+4
Add/Subtract the numbers: −6+4=−2=−2
=3−2​
Apply the fraction rule: b−a​=−ba​=−32​
x=−32​
x=−32​
x=−32​
x=−32​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(a)= 38/13tan(c)=0.6538(sec^2(a))cos^2(a)=sin^2(a)-2sin(x)+5sin^2(x)=0sqrt(3)*tan^2(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x+2)=arcsin(7/25)+arccos(4/5) ?

    The general solution for arctan(x+2)=arcsin(7/25)+arccos(4/5) is x=-2/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024