Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^{22}(x)=4sin^2(x)cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin22(x)=4sin2(x)cos2(x)

Solution

x=2πn,x=π+2πn,x=1.25989…+2πn,x=π−1.25989…+2πn,x=−1.25989…+2πn,x=π+1.25989…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=72.18663…∘+360∘n,x=107.81336…∘+360∘n,x=−72.18663…∘+360∘n,x=252.18663…∘+360∘n
Solution steps
sin22(x)=4sin2(x)cos2(x)
Subtract 4sin2(x)cos2(x) from both sidessin22(x)−4sin2(x)cos2(x)=0
Rewrite using trig identities
sin22(x)−4cos2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin22(x)−4(1−sin2(x))sin2(x)
sin22(x)−(1−sin2(x))⋅4sin2(x)=0
Solve by substitution
sin22(x)−(1−sin2(x))⋅4sin2(x)=0
Let: sin(x)=uu22−(1−u2)⋅4u2=0
u22−(1−u2)⋅4u2=0:u=0,u=0.90641…​,u=−0.90641…​
u22−(1−u2)⋅4u2=0
Expand u22−(1−u2)⋅4u2:u22−4u2+4u4
u22−(1−u2)⋅4u2
=u22−4u2(1−u2)
Expand −4u2(1−u2):−4u2+4u4
−4u2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−4u2,b=1,c=u2=−4u2⋅1−(−4u2)u2
Apply minus-plus rules−(−a)=a=−4⋅1⋅u2+4u2u2
Simplify −4⋅1⋅u2+4u2u2:−4u2+4u4
−4⋅1⋅u2+4u2u2
4⋅1⋅u2=4u2
4⋅1⋅u2
Multiply the numbers: 4⋅1=4=4u2
4u2u2=4u4
4u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=4u2+2
Add the numbers: 2+2=4=4u4
=−4u2+4u4
=−4u2+4u4
=u22−4u2+4u4
u22−4u2+4u4=0
Write in the standard form an​xn+…+a1​x+a0​=0u22+4u4−4u2=0
Rewrite the equation with v=u2,v2=u4 and v11=u22v11+4v2−4v=0
Solve v11+4v2−4v=0:v=0,v≈0.90641…,v≈−1.24548…
v11+4v2−4v=0
Factor v11+4v2−4v:v(v10+4v−4)
v11+4v2−4v
Apply exponent rule: ab+c=abacv2=vv=v10v+4vv−4v
Factor out common term v=v(v10+4v−4)
v(v10+4v−4)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v=0orv10+4v−4=0
Solve v10+4v−4=0:v≈0.90641…,v≈−1.24548…
v10+4v−4=0
Find one solution for v10+4v−4=0 using Newton-Raphson:v≈0.90641…
v10+4v−4=0
Newton-Raphson Approximation Definition
f(v)=v10+4v−4
Find f′(v):10v9+4
dvd​(v10+4v−4)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v10)+dvd​(4v)−dvd​(4)
dvd​(v10)=10v9
dvd​(v10)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10v10−1
Simplify=10v9
dvd​(4v)=4
dvd​(4v)
Take the constant out: (a⋅f)′=a⋅f′=4dvdv​
Apply the common derivative: dvdv​=1=4⋅1
Simplify=4
dvd​(4)=0
dvd​(4)
Derivative of a constant: dxd​(a)=0=0
=10v9+4−0
Simplify=10v9+4
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.92857…:Δv1​=0.07142…
f(v0​)=110+4⋅1−4=1f′(v0​)=10⋅19+4=14v1​=0.92857…
Δv1​=∣0.92857…−1∣=0.07142…Δv1​=0.07142…
v2​=0.90766…:Δv2​=0.02090…
f(v1​)=0.92857…10+4⋅0.92857…−4=0.19088…f′(v1​)=10⋅0.92857…9+4=9.13260…v2​=0.90766…
Δv2​=∣0.90766…−0.92857…∣=0.02090…Δv2​=0.02090…
v3​=0.90641…:Δv3​=0.00125…
f(v2​)=0.90766…10+4⋅0.90766…−4=0.01023…f′(v2​)=10⋅0.90766…9+4=8.18168…v3​=0.90641…
Δv3​=∣0.90641…−0.90766…∣=0.00125…Δv3​=0.00125…
v4​=0.90641…:Δv4​=3.97918E−6
f(v3​)=0.90641…10+4⋅0.90641…−4=0.00003…f′(v3​)=10⋅0.90641…9+4=8.13008…v4​=0.90641…
Δv4​=∣0.90641…−0.90641…∣=3.97918E−6Δv4​=3.97918E−6
v5​=0.90641…:Δv5​=3.99335E−11
f(v4​)=0.90641…10+4⋅0.90641…−4=3.24656E−10f′(v4​)=10⋅0.90641…9+4=8.12992…v5​=0.90641…
Δv5​=∣0.90641…−0.90641…∣=3.99335E−11Δv5​=3.99335E−11
v≈0.90641…
Apply long division:v−0.90641…v10+4v−4​=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…≈0
Find one solution for v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0 using Newton-Raphson:v≈−1.24548…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0
Newton-Raphson Approximation Definition
f(v)=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
Find f′(v):9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
dvd​(v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v9)+dvd​(0.90641…v8)+dvd​(0.82158…v7)+dvd​(0.74469…v6)+dvd​(0.67500…v5)+dvd​(0.61183…v4)+dvd​(0.55457…v3)+dvd​(0.50267…v2)+dvd​(0.45563…v)+dvd​(4.41299…)
dvd​(v9)=9v8
dvd​(v9)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9v9−1
Simplify=9v8
dvd​(0.90641…v8)=7.25131…v7
dvd​(0.90641…v8)
Take the constant out: (a⋅f)′=a⋅f′=0.90641…dvd​(v8)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.90641…⋅8v8−1
Simplify=7.25131…v7
dvd​(0.82158…v7)=5.75111…v6
dvd​(0.82158…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.82158…dvd​(v7)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.82158…⋅7v7−1
Simplify=5.75111…v6
dvd​(0.74469…v6)=4.46819…v5
dvd​(0.74469…v6)
Take the constant out: (a⋅f)′=a⋅f′=0.74469…dvd​(v6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.74469…⋅6v6−1
Simplify=4.46819…v5
dvd​(0.67500…v5)=3.37502…v4
dvd​(0.67500…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.67500…dvd​(v5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.67500…⋅5v5−1
Simplify=3.37502…v4
dvd​(0.61183…v4)=2.44733…v3
dvd​(0.61183…v4)
Take the constant out: (a⋅f)′=a⋅f′=0.61183…dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.61183…⋅4v4−1
Simplify=2.44733…v3
dvd​(0.55457…v3)=1.66372…v2
dvd​(0.55457…v3)
Take the constant out: (a⋅f)′=a⋅f′=0.55457…dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.55457…⋅3v3−1
Simplify=1.66372…v2
dvd​(0.50267…v2)=1.00535…v
dvd​(0.50267…v2)
Take the constant out: (a⋅f)′=a⋅f′=0.50267…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.50267…⋅2v2−1
Simplify=1.00535…v
dvd​(0.45563…v)=0.45563…
dvd​(0.45563…v)
Take the constant out: (a⋅f)′=a⋅f′=0.45563…dvdv​
Apply the common derivative: dvdv​=1=0.45563…⋅1
Simplify=0.45563…
dvd​(4.41299…)=0
dvd​(4.41299…)
Derivative of a constant: dxd​(a)=0=0
=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…+0
Simplify=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
Let v0​=−5Compute vn+1​ until Δvn+1​<0.000001
v1​=−4.45375…:Δv1​=0.54624…
f(v0​)=(−5)9+0.90641…(−5)8+0.82158…(−5)7+0.74469…(−5)6+0.67500…(−5)5+0.61183…(−5)4+0.55457…(−5)3+0.50267…(−5)2+0.45563…(−5)+4.41299…=−1653389.03665…f′(v0​)=9(−5)8+7.25131…(−5)7+5.75111…(−5)6+4.46819…(−5)5+3.37502…(−5)4+2.44733…(−5)3+1.66372…(−5)2+1.00535…(−5)+0.45563…=3026854.43549…v1​=−4.45375…
Δv1​=∣−4.45375…−(−5)∣=0.54624…Δv1​=0.54624…
v2​=−3.96802…:Δv2​=0.48573…
f(v1​)=(−4.45375…)9+0.90641…(−4.45375…)8+0.82158…(−4.45375…)7+0.74469…(−4.45375…)6+0.67500…(−4.45375…)5+0.61183…(−4.45375…)4+0.55457…(−4.45375…)3+0.50267…(−4.45375…)2+0.45563…(−4.45375…)+4.41299…=−572909.56059…f′(v1​)=9(−4.45375…)8+7.25131…(−4.45375…)7+5.75111…(−4.45375…)6+4.46819…(−4.45375…)5+3.37502…(−4.45375…)4+2.44733…(−4.45375…)3+1.66372…(−4.45375…)2+1.00535…(−4.45375…)+0.45563…=1179476.08686…v2​=−3.96802…
Δv2​=∣−3.96802…−(−4.45375…)∣=0.48573…Δv2​=0.48573…
v3​=−3.53606…:Δv3​=0.43195…
f(v2​)=(−3.96802…)9+0.90641…(−3.96802…)8+0.82158…(−3.96802…)7+0.74469…(−3.96802…)6+0.67500…(−3.96802…)5+0.61183…(−3.96802…)4+0.55457…(−3.96802…)3+0.50267…(−3.96802…)2+0.45563…(−3.96802…)+4.41299…=−198524.05883…f′(v2​)=9(−3.96802…)8+7.25131…(−3.96802…)7+5.75111…(−3.96802…)6+4.46819…(−3.96802…)5+3.37502…(−3.96802…)4+2.44733…(−3.96802…)3+1.66372…(−3.96802…)2+1.00535…(−3.96802…)+0.45563…=459591.06090…v3​=−3.53606…
Δv3​=∣−3.53606…−(−3.96802…)∣=0.43195…Δv3​=0.43195…
v4​=−3.15190…:Δv4​=0.38416…
f(v3​)=(−3.53606…)9+0.90641…(−3.53606…)8+0.82158…(−3.53606…)7+0.74469…(−3.53606…)6+0.67500…(−3.53606…)5+0.61183…(−3.53606…)4+0.55457…(−3.53606…)3+0.50267…(−3.53606…)2+0.45563…(−3.53606…)+4.41299…=−68794.93716…f′(v3​)=9(−3.53606…)8+7.25131…(−3.53606…)7+5.75111…(−3.53606…)6+4.46819…(−3.53606…)5+3.37502…(−3.53606…)4+2.44733…(−3.53606…)3+1.66372…(−3.53606…)2+1.00535…(−3.53606…)+0.45563…=179076.94254…v4​=−3.15190…
Δv4​=∣−3.15190…−(−3.53606…)∣=0.38416…Δv4​=0.38416…
v5​=−2.81023…:Δv5​=0.34167…
f(v4​)=(−3.15190…)9+0.90641…(−3.15190…)8+0.82158…(−3.15190…)7+0.74469…(−3.15190…)6+0.67500…(−3.15190…)5+0.61183…(−3.15190…)4+0.55457…(−3.15190…)3+0.50267…(−3.15190…)2+0.45563…(−3.15190…)+4.41299…=−23840.26765…f′(v4​)=9(−3.15190…)8+7.25131…(−3.15190…)7+5.75111…(−3.15190…)6+4.46819…(−3.15190…)5+3.37502…(−3.15190…)4+2.44733…(−3.15190…)3+1.66372…(−3.15190…)2+1.00535…(−3.15190…)+0.45563…=69775.21311…v5​=−2.81023…
Δv5​=∣−2.81023…−(−3.15190…)∣=0.34167…Δv5​=0.34167…
v6​=−2.50637…:Δv6​=0.30385…
f(v5​)=(−2.81023…)9+0.90641…(−2.81023…)8+0.82158…(−2.81023…)7+0.74469…(−2.81023…)6+0.67500…(−2.81023…)5+0.61183…(−2.81023…)4+0.55457…(−2.81023…)3+0.50267…(−2.81023…)2+0.45563…(−2.81023…)+4.41299…=−8261.45550…f′(v5​)=9(−2.81023…)8+7.25131…(−2.81023…)7+5.75111…(−2.81023…)6+4.46819…(−2.81023…)5+3.37502…(−2.81023…)4+2.44733…(−2.81023…)3+1.66372…(−2.81023…)2+1.00535…(−2.81023…)+0.45563…=27188.45003…v6​=−2.50637…
Δv6​=∣−2.50637…−(−2.81023…)∣=0.30385…Δv6​=0.30385…
v7​=−2.23625…:Δv7​=0.27011…
f(v6​)=(−2.50637…)9+0.90641…(−2.50637…)8+0.82158…(−2.50637…)7+0.74469…(−2.50637…)6+0.67500…(−2.50637…)5+0.61183…(−2.50637…)4+0.55457…(−2.50637…)3+0.50267…(−2.50637…)2+0.45563…(−2.50637…)+4.41299…=−2862.37457…f′(v6​)=9(−2.50637…)8+7.25131…(−2.50637…)7+5.75111…(−2.50637…)6+4.46819…(−2.50637…)5+3.37502…(−2.50637…)4+2.44733…(−2.50637…)3+1.66372…(−2.50637…)2+1.00535…(−2.50637…)+0.45563…=10596.88514…v7​=−2.23625…
Δv7​=∣−2.23625…−(−2.50637…)∣=0.27011…Δv7​=0.27011…
v8​=−1.99650…:Δv8​=0.23975…
f(v7​)=(−2.23625…)9+0.90641…(−2.23625…)8+0.82158…(−2.23625…)7+0.74469…(−2.23625…)6+0.67500…(−2.23625…)5+0.61183…(−2.23625…)4+0.55457…(−2.23625…)3+0.50267…(−2.23625…)2+0.45563…(−2.23625…)+4.41299…=−991.10859…f′(v7​)=9(−2.23625…)8+7.25131…(−2.23625…)7+5.75111…(−2.23625…)6+4.46819…(−2.23625…)5+3.37502…(−2.23625…)4+2.44733…(−2.23625…)3+1.66372…(−2.23625…)2+1.00535…(−2.23625…)+0.45563…=4133.76874…v8​=−1.99650…
Δv8​=∣−1.99650…−(−2.23625…)∣=0.23975…Δv8​=0.23975…
v9​=−1.78466…:Δv9​=0.21183…
f(v8​)=(−1.99650…)9+0.90641…(−1.99650…)8+0.82158…(−1.99650…)7+0.74469…(−1.99650…)6+0.67500…(−1.99650…)5+0.61183…(−1.99650…)4+0.55457…(−1.99650…)3+0.50267…(−1.99650…)2+0.45563…(−1.99650…)+4.41299…=−342.49576…f′(v8​)=9(−1.99650…)8+7.25131…(−1.99650…)7+5.75111…(−1.99650…)6+4.46819…(−1.99650…)5+3.37502…(−1.99650…)4+2.44733…(−1.99650…)3+1.66372…(−1.99650…)2+1.00535…(−1.99650…)+0.45563…=1616.80028…v9​=−1.78466…
Δv9​=∣−1.78466…−(−1.99650…)∣=0.21183…Δv9​=0.21183…
v10​=−1.60003…:Δv10​=0.18463…
f(v9​)=(−1.78466…)9+0.90641…(−1.78466…)8+0.82158…(−1.78466…)7+0.74469…(−1.78466…)6+0.67500…(−1.78466…)5+0.61183…(−1.78466…)4+0.55457…(−1.78466…)3+0.50267…(−1.78466…)2+0.45563…(−1.78466…)+4.41299…=−117.65885…f′(v9​)=9(−1.78466…)8+7.25131…(−1.78466…)7+5.75111…(−1.78466…)6+4.46819…(−1.78466…)5+3.37502…(−1.78466…)4+2.44733…(−1.78466…)3+1.66372…(−1.78466…)2+1.00535…(−1.78466…)+0.45563…=637.26147…v10​=−1.60003…
Δv10​=∣−1.60003…−(−1.78466…)∣=0.18463…Δv10​=0.18463…
v11​=−1.44531…:Δv11​=0.15471…
f(v10​)=(−1.60003…)9+0.90641…(−1.60003…)8+0.82158…(−1.60003…)7+0.74469…(−1.60003…)6+0.67500…(−1.60003…)5+0.61183…(−1.60003…)4+0.55457…(−1.60003…)3+0.50267…(−1.60003…)2+0.45563…(−1.60003…)+4.41299…=−39.72697…f′(v10​)=9(−1.60003…)8+7.25131…(−1.60003…)7+5.75111…(−1.60003…)6+4.46819…(−1.60003…)5+3.37502…(−1.60003…)4+2.44733…(−1.60003…)3+1.66372…(−1.60003…)2+1.00535…(−1.60003…)+0.45563…=256.77560…v11​=−1.44531…
Δv11​=∣−1.44531…−(−1.60003…)∣=0.15471…Δv11​=0.15471…
v12​=−1.32926…:Δv12​=0.11605…
f(v11​)=(−1.44531…)9+0.90641…(−1.44531…)8+0.82158…(−1.44531…)7+0.74469…(−1.44531…)6+0.67500…(−1.44531…)5+0.61183…(−1.44531…)4+0.55457…(−1.44531…)3+0.50267…(−1.44531…)2+0.45563…(−1.44531…)+4.41299…=−12.75482…f′(v11​)=9(−1.44531…)8+7.25131…(−1.44531…)7+5.75111…(−1.44531…)6+4.46819…(−1.44531…)5+3.37502…(−1.44531…)4+2.44733…(−1.44531…)3+1.66372…(−1.44531…)2+1.00535…(−1.44531…)+0.45563…=109.90167…v12​=−1.32926…
Δv12​=∣−1.32926…−(−1.44531…)∣=0.11605…Δv12​=0.11605…
v13​=−1.26447…:Δv13​=0.06478…
f(v12​)=(−1.32926…)9+0.90641…(−1.32926…)8+0.82158…(−1.32926…)7+0.74469…(−1.32926…)6+0.67500…(−1.32926…)5+0.61183…(−1.32926…)4+0.55457…(−1.32926…)3+0.50267…(−1.32926…)2+0.45563…(−1.32926…)+4.41299…=−3.53618…f′(v12​)=9(−1.32926…)8+7.25131…(−1.32926…)7+5.75111…(−1.32926…)6+4.46819…(−1.32926…)5+3.37502…(−1.32926…)4+2.44733…(−1.32926…)3+1.66372…(−1.32926…)2+1.00535…(−1.32926…)+0.45563…=54.58328…v13​=−1.26447…
Δv13​=∣−1.26447…−(−1.32926…)∣=0.06478…Δv13​=0.06478…
v14​=−1.24663…:Δv14​=0.01784…
f(v13​)=(−1.26447…)9+0.90641…(−1.26447…)8+0.82158…(−1.26447…)7+0.74469…(−1.26447…)6+0.67500…(−1.26447…)5+0.61183…(−1.26447…)4+0.55457…(−1.26447…)3+0.50267…(−1.26447…)2+0.45563…(−1.26447…)+4.41299…=−0.64115…f′(v13​)=9(−1.26447…)8+7.25131…(−1.26447…)7+5.75111…(−1.26447…)6+4.46819…(−1.26447…)5+3.37502…(−1.26447…)4+2.44733…(−1.26447…)3+1.66372…(−1.26447…)2+1.00535…(−1.26447…)+0.45563…=35.92993…v14​=−1.24663…
Δv14​=∣−1.24663…−(−1.26447…)∣=0.01784…Δv14​=0.01784…
v15​=−1.24548…:Δv15​=0.00114…
f(v14​)=(−1.24663…)9+0.90641…(−1.24663…)8+0.82158…(−1.24663…)7+0.74469…(−1.24663…)6+0.67500…(−1.24663…)5+0.61183…(−1.24663…)4+0.55457…(−1.24663…)3+0.50267…(−1.24663…)2+0.45563…(−1.24663…)+4.41299…=−0.03658…f′(v14​)=9(−1.24663…)8+7.25131…(−1.24663…)7+5.75111…(−1.24663…)6+4.46819…(−1.24663…)5+3.37502…(−1.24663…)4+2.44733…(−1.24663…)3+1.66372…(−1.24663…)2+1.00535…(−1.24663…)+0.45563…=31.89979…v15​=−1.24548…
Δv15​=∣−1.24548…−(−1.24663…)∣=0.00114…Δv15​=0.00114…
v16​=−1.24548…:Δv16​=4.44027E−6
f(v15​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−0.00014…f′(v15​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65496…v16​=−1.24548…
Δv16​=∣−1.24548…−(−1.24548…)∣=4.44027E−6Δv16​=4.44027E−6
v17​=−1.24548…:Δv17​=6.62571E−11
f(v16​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−2.0973E−9f′(v16​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65401…v17​=−1.24548…
Δv17​=∣−1.24548…−(−1.24548…)∣=6.62571E−11Δv17​=6.62571E−11
v≈−1.24548…
Apply long division:v+1.24548…v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…​=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…≈0
Find one solution for v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0 using Newton-Raphson:No Solution for v∈R
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0
Newton-Raphson Approximation Definition
f(v)=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
Find f′(v):8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
dvd​(v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(v8)−dvd​(0.33906…v7)+dvd​(1.24388…v6)−dvd​(0.80453…v5)+dvd​(1.67704…v4)−dvd​(1.47688…v3)+dvd​(2.39401…v2)−dvd​(2.47902…v)+dvd​(3.54320…)
dvd​(v8)=8v7
dvd​(v8)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8v8−1
Simplify=8v7
dvd​(0.33906…v7)=2.37346…v6
dvd​(0.33906…v7)
Take the constant out: (a⋅f)′=a⋅f′=0.33906…dvd​(v7)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.33906…⋅7v7−1
Simplify=2.37346…v6
dvd​(1.24388…v6)=7.46332…v5
dvd​(1.24388…v6)
Take the constant out: (a⋅f)′=a⋅f′=1.24388…dvd​(v6)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.24388…⋅6v6−1
Simplify=7.46332…v5
dvd​(0.80453…v5)=4.02269…v4
dvd​(0.80453…v5)
Take the constant out: (a⋅f)′=a⋅f′=0.80453…dvd​(v5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=0.80453…⋅5v5−1
Simplify=4.02269…v4
dvd​(1.67704…v4)=6.70817…v3
dvd​(1.67704…v4)
Take the constant out: (a⋅f)′=a⋅f′=1.67704…dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.67704…⋅4v4−1
Simplify=6.70817…v3
dvd​(1.47688…v3)=4.43066…v2
dvd​(1.47688…v3)
Take the constant out: (a⋅f)′=a⋅f′=1.47688…dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.47688…⋅3v3−1
Simplify=4.43066…v2
dvd​(2.39401…v2)=4.78802…v
dvd​(2.39401…v2)
Take the constant out: (a⋅f)′=a⋅f′=2.39401…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2.39401…⋅2v2−1
Simplify=4.78802…v
dvd​(2.47902…v)=2.47902…
dvd​(2.47902…v)
Take the constant out: (a⋅f)′=a⋅f′=2.47902…dvdv​
Apply the common derivative: dvdv​=1=2.47902…⋅1
Simplify=2.47902…
dvd​(3.54320…)=0
dvd​(3.54320…)
Derivative of a constant: dxd​(a)=0=0
=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…+0
Simplify=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.65147…:Δv1​=0.34852…
f(v0​)=18−0.33906…⋅17+1.24388…⋅16−0.80453…⋅15+1.67704…⋅14−1.47688…⋅13+2.39401…⋅12−2.47902…⋅1+3.54320…=4.75863…f′(v0​)=8⋅17−2.37346…⋅16+7.46332…⋅15−4.02269…⋅14+6.70817…⋅13−4.43066…⋅12+4.78802…⋅1−2.47902…=13.65367…v1​=0.65147…
Δv1​=∣0.65147…−1∣=0.34852…Δv1​=0.34852…
v2​=−2.25263…:Δv2​=2.90411…
f(v1​)=0.65147…8−0.33906…⋅0.65147…7+1.24388…⋅0.65147…6−0.80453…⋅0.65147…5+1.67704…⋅0.65147…4−1.47688…⋅0.65147…3+2.39401…⋅0.65147…2−2.47902…⋅0.65147…+3.54320…=2.85422…f′(v1​)=8⋅0.65147…7−2.37346…⋅0.65147…6+7.46332…⋅0.65147…5−4.02269…⋅0.65147…4+6.70817…⋅0.65147…3−4.43066…⋅0.65147…2+4.78802…⋅0.65147…−2.47902…=0.98282…v2​=−2.25263…
Δv2​=∣−2.25263…−0.65147…∣=2.90411…Δv2​=2.90411…
v3​=−1.93475…:Δv3​=0.31788…
f(v2​)=(−2.25263…)8−0.33906…(−2.25263…)7+1.24388…(−2.25263…)6−0.80453…(−2.25263…)5+1.67704…(−2.25263…)4−1.47688…(−2.25263…)3+2.39401…(−2.25263…)2−2.47902…(−2.25263…)+3.54320…=1053.34912…f′(v2​)=8(−2.25263…)7−2.37346…(−2.25263…)6+7.46332…(−2.25263…)5−4.02269…(−2.25263…)4+6.70817…(−2.25263…)3−4.43066…(−2.25263…)2+4.78802…(−2.25263…)−2.47902…=−3313.66679…v3​=−1.93475…
Δv3​=∣−1.93475…−(−2.25263…)∣=0.31788…Δv3​=0.31788…
v4​=−1.64441…:Δv4​=0.29034…
f(v3​)=(−1.93475…)8−0.33906…(−1.93475…)7+1.24388…(−1.93475…)6−0.80453…(−1.93475…)5+1.67704…(−1.93475…)4−1.47688…(−1.93475…)3+2.39401…(−1.93475…)2−2.47902…(−1.93475…)+3.54320…=369.29768…f′(v3​)=8(−1.93475…)7−2.37346…(−1.93475…)6+7.46332…(−1.93475…)5−4.02269…(−1.93475…)4+6.70817…(−1.93475…)3−4.43066…(−1.93475…)2+4.78802…(−1.93475…)−2.47902…=−1271.93873…v4​=−1.64441…
Δv4​=∣−1.64441…−(−1.93475…)∣=0.29034…Δv4​=0.29034…
v5​=−1.36913…:Δv5​=0.27528…
f(v4​)=(−1.64441…)8−0.33906…(−1.64441…)7+1.24388…(−1.64441…)6−0.80453…(−1.64441…)5+1.67704…(−1.64441…)4−1.47688…(−1.64441…)3+2.39401…(−1.64441…)2−2.47902…(−1.64441…)+3.54320…=131.68340…f′(v4​)=8(−1.64441…)7−2.37346…(−1.64441…)6+7.46332…(−1.64441…)5−4.02269…(−1.64441…)4+6.70817…(−1.64441…)3−4.43066…(−1.64441…)2+4.78802…(−1.64441…)−2.47902…=−478.36033…v5​=−1.36913…
Δv5​=∣−1.36913…−(−1.64441…)∣=0.27528…Δv5​=0.27528…
v6​=−1.08732…:Δv6​=0.28180…
f(v5​)=(−1.36913…)8−0.33906…(−1.36913…)7+1.24388…(−1.36913…)6−0.80453…(−1.36913…)5+1.67704…(−1.36913…)4−1.47688…(−1.36913…)3+2.39401…(−1.36913…)2−2.47902…(−1.36913…)+3.54320…=48.57656…f′(v5​)=8(−1.36913…)7−2.37346…(−1.36913…)6+7.46332…(−1.36913…)5−4.02269…(−1.36913…)4+6.70817…(−1.36913…)3−4.43066…(−1.36913…)2+4.78802…(−1.36913…)−2.47902…=−172.37459…v6​=−1.08732…
Δv6​=∣−1.08732…−(−1.36913…)∣=0.28180…Δv6​=0.28180…
v7​=−0.75017…:Δv7​=0.33714…
f(v6​)=(−1.08732…)8−0.33906…(−1.08732…)7+1.24388…(−1.08732…)6−0.80453…(−1.08732…)5+1.67704…(−1.08732…)4−1.47688…(−1.08732…)3+2.39401…(−1.08732…)2−2.47902…(−1.08732…)+3.54320…=19.15306…f′(v6​)=8(−1.08732…)7−2.37346…(−1.08732…)6+7.46332…(−1.08732…)5−4.02269…(−1.08732…)4+6.70817…(−1.08732…)3−4.43066…(−1.08732…)2+4.78802…(−1.08732…)−2.47902…=−56.80952…v7​=−0.75017…
Δv7​=∣−0.75017…−(−1.08732…)∣=0.33714…Δv7​=0.33714…
v8​=−0.21910…:Δv8​=0.53107…
f(v7​)=(−0.75017…)8−0.33906…(−0.75017…)7+1.24388…(−0.75017…)6−0.80453…(−0.75017…)5+1.67704…(−0.75017…)4−1.47688…(−0.75017…)3+2.39401…(−0.75017…)2−2.47902…(−0.75017…)+3.54320…=8.46330…f′(v7​)=8(−0.75017…)7−2.37346…(−0.75017…)6+7.46332…(−0.75017…)5−4.02269…(−0.75017…)4+6.70817…(−0.75017…)3−4.43066…(−0.75017…)2+4.78802…(−0.75017…)−2.47902…=−15.93620…v8​=−0.21910…
Δv8​=∣−0.21910…−(−0.75017…)∣=0.53107…Δv8​=0.53107…
Cannot find solution
The solutions arev≈0.90641…,v≈−1.24548…
The solutions arev=0,v≈0.90641…,v≈−1.24548…
v=0,v≈0.90641…,v≈−1.24548…
Substitute back v=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=0.90641…:u=0.90641…​,u=−0.90641…​
u2=0.90641…
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=0.90641…​,u=−0.90641…​
Solve u2=−1.24548…:No Solution for u∈R
u2=−1.24548…
x2 cannot be negative for x∈RNoSolutionforu∈R
The solutions are
u=0,u=0.90641…​,u=−0.90641…​
Substitute back u=sin(x)sin(x)=0,sin(x)=0.90641…​,sin(x)=−0.90641…​
sin(x)=0,sin(x)=0.90641…​,sin(x)=−0.90641…​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=0.90641…​:x=arcsin(0.90641…​)+2πn,x=π−arcsin(0.90641…​)+2πn
sin(x)=0.90641…​
Apply trig inverse properties
sin(x)=0.90641…​
General solutions for sin(x)=0.90641…​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.90641…​)+2πn,x=π−arcsin(0.90641…​)+2πn
x=arcsin(0.90641…​)+2πn,x=π−arcsin(0.90641…​)+2πn
sin(x)=−0.90641…​:x=arcsin(−0.90641…​)+2πn,x=π+arcsin(0.90641…​)+2πn
sin(x)=−0.90641…​
Apply trig inverse properties
sin(x)=−0.90641…​
General solutions for sin(x)=−0.90641…​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.90641…​)+2πn,x=π+arcsin(0.90641…​)+2πn
x=arcsin(−0.90641…​)+2πn,x=π+arcsin(0.90641…​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin(0.90641…​)+2πn,x=π−arcsin(0.90641…​)+2πn,x=arcsin(−0.90641…​)+2πn,x=π+arcsin(0.90641…​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=1.25989…+2πn,x=π−1.25989…+2πn,x=−1.25989…+2πn,x=π+1.25989…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=(4.1)/(7.1)(1+cos^2(a))sin^2(a)=1cos^4(x)=cos^{23}(x)cos^4(x)+2cos^2(x)=1cos^2(x)+sin^2(x)=cos^5(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024