Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

21+18cos(x)=16(1-cos^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

21+18cos(x)=16(1−cos2(x))

Solution

x=2.24592…+2πn,x=−2.24592…+2πn,x=32π​+2πn,x=34π​+2πn
+1
Degrees
x=128.68218…∘+360∘n,x=−128.68218…∘+360∘n,x=120∘+360∘n,x=240∘+360∘n
Solution steps
21+18cos(x)=16(1−cos2(x))
Solve by substitution
21+18cos(x)=16(1−cos2(x))
Let: cos(x)=u21+18u=16(1−u2)
21+18u=16(1−u2):u=−85​,u=−21​
21+18u=16(1−u2)
Expand 16(1−u2):16−16u2
16(1−u2)
Apply the distributive law: a(b−c)=ab−aca=16,b=1,c=u2=16⋅1−16u2
Multiply the numbers: 16⋅1=16=16−16u2
21+18u=16−16u2
Switch sides16−16u2=21+18u
Move 18uto the left side
16−16u2=21+18u
Subtract 18u from both sides16−16u2−18u=21+18u−18u
Simplify16−16u2−18u=21
16−16u2−18u=21
Move 21to the left side
16−16u2−18u=21
Subtract 21 from both sides16−16u2−18u−21=21−21
Simplify−16u2−18u−5=0
−16u2−18u−5=0
Solve with the quadratic formula
−16u2−18u−5=0
Quadratic Equation Formula:
For a=−16,b=−18,c=−5u1,2​=2(−16)−(−18)±(−18)2−4(−16)(−5)​​
u1,2​=2(−16)−(−18)±(−18)2−4(−16)(−5)​​
(−18)2−4(−16)(−5)​=2
(−18)2−4(−16)(−5)​
Apply rule −(−a)=a=(−18)2−4⋅16⋅5​
Apply exponent rule: (−a)n=an,if n is even(−18)2=182=182−4⋅16⋅5​
Multiply the numbers: 4⋅16⋅5=320=182−320​
182=324=324−320​
Subtract the numbers: 324−320=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u1,2​=2(−16)−(−18)±2​
Separate the solutionsu1​=2(−16)−(−18)+2​,u2​=2(−16)−(−18)−2​
u=2(−16)−(−18)+2​:−85​
2(−16)−(−18)+2​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1618+2​
Add the numbers: 18+2=20=−2⋅1620​
Multiply the numbers: 2⋅16=32=−3220​
Apply the fraction rule: −ba​=−ba​=−3220​
Cancel the common factor: 4=−85​
u=2(−16)−(−18)−2​:−21​
2(−16)−(−18)−2​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1618−2​
Subtract the numbers: 18−2=16=−2⋅1616​
Multiply the numbers: 2⋅16=32=−3216​
Apply the fraction rule: −ba​=−ba​=−3216​
Cancel the common factor: 16=−21​
The solutions to the quadratic equation are:u=−85​,u=−21​
Substitute back u=cos(x)cos(x)=−85​,cos(x)=−21​
cos(x)=−85​,cos(x)=−21​
cos(x)=−85​:x=arccos(−85​)+2πn,x=−arccos(−85​)+2πn
cos(x)=−85​
Apply trig inverse properties
cos(x)=−85​
General solutions for cos(x)=−85​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−85​)+2πn,x=−arccos(−85​)+2πn
x=arccos(−85​)+2πn,x=−arccos(−85​)+2πn
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
Combine all the solutionsx=arccos(−85​)+2πn,x=−arccos(−85​)+2πn,x=32π​+2πn,x=34π​+2πn
Show solutions in decimal formx=2.24592…+2πn,x=−2.24592…+2πn,x=32π​+2πn,x=34π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2a+10)=cos(3a-20)b= 3/((cot(x)))4sin^2(x)+cos(x)+1=0(cot^2(x))-csc(x)=1solvefor x,u=arctan(x/y)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024