Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sinh^2(x)-5cosh(x)+7=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sinh2(x)−5cosh(x)+7=0

Solution

x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
+1
Degrees
x=−100.99797…∘,x=−75.45612…∘,x=75.45612…∘,x=100.99797…∘
Solution steps
sinh2(x)−5cosh(x)+7=0
Rewrite using trig identities
sinh2(x)−5cosh(x)+7=0
Use the Hyperbolic identity: sinh(x)=2ex−e−x​(2ex−e−x​)2−5cosh(x)+7=0
Use the Hyperbolic identity: cosh(x)=2ex+e−x​(2ex−e−x​)2−5⋅2ex+e−x​+7=0
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
(2ex−e−x​)2−5⋅2ex+e−x​+7=0:x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
Apply exponent rules
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
Apply exponent rule: abc=(ab)ce−x=(ex)−1(2ex−(ex)−1​)2−5⋅2ex+(ex)−1​+7=0
(2ex−(ex)−1​)2−5⋅2ex+(ex)−1​+7=0
Rewrite the equation with ex=u(2u−(u)−1​)2−5⋅2u+(u)−1​+7=0
Solve (2u−u−1​)2−5⋅2u+u−1​+7=0:u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
(2u−u−1​)2−5⋅2u+u−1​+7=0
Refine4u2(u2−1)2​−2u5(u2+1)​+7=0
Multiply by LCM
4u2(u2−1)2​−2u5(u2+1)​+7=0
Find Least Common Multiplier of 4u2,2u:4u2
4u2,2u
Lowest Common Multiplier (LCM)
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Compute an expression comprised of factors that appear either in 4u2 or 2u=4u2
Multiply by LCM=4u24u2(u2−1)2​⋅4u2−2u5(u2+1)​⋅4u2+7⋅4u2=0⋅4u2
Simplify
4u2(u2−1)2​⋅4u2−2u5(u2+1)​⋅4u2+7⋅4u2=0⋅4u2
Simplify 4u2(u2−1)2​⋅4u2:(u2−1)2
4u2(u2−1)2​⋅4u2
Multiply fractions: a⋅cb​=ca⋅b​=4u2(u2−1)2⋅4u2​
Cancel the common factor: 4=u2(u2−1)2u2​
Cancel the common factor: u2=(u2−1)2
Simplify −2u5(u2+1)​⋅4u2:−10u(u2+1)
−2u5(u2+1)​⋅4u2
Multiply fractions: a⋅cb​=ca⋅b​=−2u5(u2+1)⋅4u2​
Multiply the numbers: 5⋅4=20=−2u20u2(u2+1)​
Divide the numbers: 220​=10=u10u2(u2+1)​
Cancel the common factor: u=−10u(u2+1)
Simplify 7⋅4u2:28u2
7⋅4u2
Multiply the numbers: 7⋅4=28=28u2
Simplify 0⋅4u2:0
0⋅4u2
Apply rule 0⋅a=0=0
(u2−1)2−10u(u2+1)+28u2=0
(u2−1)2−10u(u2+1)+28u2=0
(u2−1)2−10u(u2+1)+28u2=0
Solve (u2−1)2−10u(u2+1)+28u2=0:u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
(u2−1)2−10u(u2+1)+28u2=0
Expand (u2−1)2−10u(u2+1)+28u2:u4−10u3+26u2−10u+1
(u2−1)2−10u(u2+1)+28u2
(u2−1)2:u4−2u2+1
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
Simplify (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
Apply rule 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=u4−2u2+1−10u(u2+1)+28u2
Expand −10u(u2+1):−10u3−10u
−10u(u2+1)
Apply the distributive law: a(b+c)=ab+aca=−10u,b=u2,c=1=−10uu2+(−10u)⋅1
Apply minus-plus rules+(−a)=−a=−10u2u−10⋅1⋅u
Simplify −10u2u−10⋅1⋅u:−10u3−10u
−10u2u−10⋅1⋅u
10u2u=10u3
10u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=10u2+1
Add the numbers: 2+1=3=10u3
10⋅1⋅u=10u
10⋅1⋅u
Multiply the numbers: 10⋅1=10=10u
=−10u3−10u
=−10u3−10u
=u4−2u2+1−10u3−10u+28u2
Simplify u4−2u2+1−10u3−10u+28u2:u4−10u3+26u2−10u+1
u4−2u2+1−10u3−10u+28u2
Group like terms=u4−10u3−2u2+28u2−10u+1
Add similar elements: −2u2+28u2=26u2=u4−10u3+26u2−10u+1
=u4−10u3+26u2−10u+1
u4−10u3+26u2−10u+1=0
Find one solution for u4−10u3+26u2−10u+1=0 using Newton-Raphson:u≈0.17157…
u4−10u3+26u2−10u+1=0
Newton-Raphson Approximation Definition
f(u)=u4−10u3+26u2−10u+1
Find f′(u):4u3−30u2+52u−10
dud​(u4−10u3+26u2−10u+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u4)−dud​(10u3)+dud​(26u2)−dud​(10u)+dud​(1)
dud​(u4)=4u3
dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4u4−1
Simplify=4u3
dud​(10u3)=30u2
dud​(10u3)
Take the constant out: (a⋅f)′=a⋅f′=10dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10⋅3u3−1
Simplify=30u2
dud​(26u2)=52u
dud​(26u2)
Take the constant out: (a⋅f)′=a⋅f′=26dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=26⋅2u2−1
Simplify=52u
dud​(10u)=10
dud​(10u)
Take the constant out: (a⋅f)′=a⋅f′=10dudu​
Apply the common derivative: dudu​=1=10⋅1
Simplify=10
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=4u3−30u2+52u−10+0
Simplify=4u3−30u2+52u−10
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.1:Δu1​=0.1
f(u0​)=04−10⋅03+26⋅02−10⋅0+1=1f′(u0​)=4⋅03−30⋅02+52⋅0−10=−10u1​=0.1
Δu1​=∣0.1−0∣=0.1Δu1​=0.1
u2​=0.14907…:Δu2​=0.04907…
f(u1​)=0.14−10⋅0.13+26⋅0.12−10⋅0.1+1=0.2501f′(u1​)=4⋅0.13−30⋅0.12+52⋅0.1−10=−5.096u2​=0.14907…
Δu2​=∣0.14907…−0.1∣=0.04907…Δu2​=0.04907…
u3​=0.16783…:Δu3​=0.01875…
f(u2​)=0.14907…4−10⋅0.14907…3+26⋅0.14907…2−10⋅0.14907…+1=0.05441…f′(u2​)=4⋅0.14907…3−30⋅0.14907…2+52⋅0.14907…−10=−2.90143…u3​=0.16783…
Δu3​=∣0.16783…−0.14907…∣=0.01875…Δu3​=0.01875…
u4​=0.17143…:Δu4​=0.00360…
f(u3​)=0.16783…4−10⋅0.16783…3+26⋅0.16783…2−10⋅0.16783…+1=0.00755…f′(u3​)=4⋅0.16783…3−30⋅0.16783…2+52⋅0.16783…−10=−2.09886…u4​=0.17143…
Δu4​=∣0.17143…−0.16783…∣=0.00360…Δu4​=0.00360…
u5​=0.17157…:Δu5​=0.00014…
f(u4​)=0.17143…4−10⋅0.17143…3+26⋅0.17143…2−10⋅0.17143…+1=0.00027…f′(u4​)=4⋅0.17143…3−30⋅0.17143…2+52⋅0.17143…−10=−1.94704…u5​=0.17157…
Δu5​=∣0.17157…−0.17143…∣=0.00014…Δu5​=0.00014…
u6​=0.17157…:Δu6​=2.13816E−7
f(u5​)=0.17157…4−10⋅0.17157…3+26⋅0.17157…2−10⋅0.17157…+1=4.15046E−7f′(u5​)=4⋅0.17157…3−30⋅0.17157…2+52⋅0.17157…−10=−1.94113…u6​=0.17157…
Δu6​=∣0.17157…−0.17157…∣=2.13816E−7Δu6​=2.13816E−7
u≈0.17157…
Apply long division:u−0.17157…u4−10u3+26u2−10u+1​=u3−9.82842…u2+24.31370…u−5.82842…
u3−9.82842…u2+24.31370…u−5.82842…≈0
Find one solution for u3−9.82842…u2+24.31370…u−5.82842…=0 using Newton-Raphson:u≈0.26794…
u3−9.82842…u2+24.31370…u−5.82842…=0
Newton-Raphson Approximation Definition
f(u)=u3−9.82842…u2+24.31370…u−5.82842…
Find f′(u):3u2−19.65685…u+24.31370…
dud​(u3−9.82842…u2+24.31370…u−5.82842…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(9.82842…u2)+dud​(24.31370…u)−dud​(5.82842…)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(9.82842…u2)=19.65685…u
dud​(9.82842…u2)
Take the constant out: (a⋅f)′=a⋅f′=9.82842…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9.82842…⋅2u2−1
Simplify=19.65685…u
dud​(24.31370…u)=24.31370…
dud​(24.31370…u)
Take the constant out: (a⋅f)′=a⋅f′=24.31370…dudu​
Apply the common derivative: dudu​=1=24.31370…⋅1
Simplify=24.31370…
dud​(5.82842…)=0
dud​(5.82842…)
Derivative of a constant: dxd​(a)=0=0
=3u2−19.65685…u+24.31370…−0
Simplify=3u2−19.65685…u+24.31370…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.23971…:Δu1​=0.23971…
f(u0​)=03−9.82842…⋅02+24.31370…⋅0−5.82842…=−5.82842…f′(u0​)=3⋅02−19.65685…⋅0+24.31370…=24.31370…u1​=0.23971…
Δu1​=∣0.23971…−0∣=0.23971…Δu1​=0.23971…
u2​=0.26758…:Δu2​=0.02786…
f(u1​)=0.23971…3−9.82842…⋅0.23971…2+24.31370…⋅0.23971…−5.82842…=−0.55101…f′(u1​)=3⋅0.23971…2−19.65685…⋅0.23971…+24.31370…=19.77400…u2​=0.26758…
Δu2​=∣0.26758…−0.23971…∣=0.02786…Δu2​=0.02786…
u3​=0.26794…:Δu3​=0.00036…
f(u2​)=0.26758…3−9.82842…⋅0.26758…2+24.31370…⋅0.26758…−5.82842…=−0.00705…f′(u2​)=3⋅0.26758…2−19.65685…⋅0.26758…+24.31370…=19.26866…u3​=0.26794…
Δu3​=∣0.26794…−0.26758…∣=0.00036…Δu3​=0.00036…
u4​=0.26794…:Δu4​=6.27517E−8
f(u3​)=0.26794…3−9.82842…⋅0.26794…2+24.31370…⋅0.26794…−5.82842…=−1.20873E−6f′(u3​)=3⋅0.26794…2−19.65685…⋅0.26794…+24.31370…=19.26206…u4​=0.26794…
Δu4​=∣0.26794…−0.26794…∣=6.27517E−8Δu4​=6.27517E−8
u≈0.26794…
Apply long division:u−0.26794…u3−9.82842…u2+24.31370…u−5.82842…​=u2−9.56047…u+21.75198…
u2−9.56047…u+21.75198…≈0
Find one solution for u2−9.56047…u+21.75198…=0 using Newton-Raphson:u≈3.73205…
u2−9.56047…u+21.75198…=0
Newton-Raphson Approximation Definition
f(u)=u2−9.56047…u+21.75198…
Find f′(u):2u−9.56047…
dud​(u2−9.56047…u+21.75198…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)−dud​(9.56047…u)+dud​(21.75198…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(9.56047…u)=9.56047…
dud​(9.56047…u)
Take the constant out: (a⋅f)′=a⋅f′=9.56047…dudu​
Apply the common derivative: dudu​=1=9.56047…⋅1
Simplify=9.56047…
dud​(21.75198…)=0
dud​(21.75198…)
Derivative of a constant: dxd​(a)=0=0
=2u−9.56047…+0
Simplify=2u−9.56047…
Let u0​=2Compute un+1​ until Δun+1​<0.000001
u1​=3.19252…:Δu1​=1.19252…
f(u0​)=22−9.56047…⋅2+21.75198…=6.63103…f′(u0​)=2⋅2−9.56047…=−5.56047…u1​=3.19252…
Δu1​=∣3.19252…−2∣=1.19252…Δu1​=1.19252…
u2​=3.64038…:Δu2​=0.44785…
f(u1​)=3.19252…2−9.56047…⋅3.19252…+21.75198…=1.42212…f′(u1​)=2⋅3.19252…−9.56047…=−3.17542…u2​=3.64038…
Δu2​=∣3.64038…−3.19252…∣=0.44785…Δu2​=0.44785…
u3​=3.72836…:Δu3​=0.08798…
f(u2​)=3.64038…2−9.56047…⋅3.64038…+21.75198…=0.20057…f′(u2​)=2⋅3.64038…−9.56047…=−2.27971…u3​=3.72836…
Δu3​=∣3.72836…−3.64038…∣=0.08798…Δu3​=0.08798…
u4​=3.73204…:Δu4​=0.00367…
f(u3​)=3.72836…2−9.56047…⋅3.72836…+21.75198…=0.00774…f′(u3​)=2⋅3.72836…−9.56047…=−2.10374…u4​=3.73204…
Δu4​=∣3.73204…−3.72836…∣=0.00367…Δu4​=0.00367…
u5​=3.73205…:Δu5​=6.45822E−6
f(u4​)=3.73204…2−9.56047…⋅3.73204…+21.75198…=0.00001…f′(u4​)=2⋅3.73204…−9.56047…=−2.09638…u5​=3.73205…
Δu5​=∣3.73205…−3.73204…∣=6.45822E−6Δu5​=6.45822E−6
u6​=3.73205…:Δu6​=1.98957E−11
f(u5​)=3.73205…2−9.56047…⋅3.73205…+21.75198…=4.17089E−11f′(u5​)=2⋅3.73205…−9.56047…=−2.09637…u6​=3.73205…
Δu6​=∣3.73205…−3.73205…∣=1.98957E−11Δu6​=1.98957E−11
u≈3.73205…
Apply long division:u−3.73205…u2−9.56047…u+21.75198…​=u−5.82842…
u−5.82842…≈0
u≈5.82842…
The solutions areu≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (2u−u−1​)2−52u+u−1​+7 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
Substitute back u=ex,solve for x
Solve ex=0.17157…:x=ln(0.17157…)
ex=0.17157…
Apply exponent rules
ex=0.17157…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.17157…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.17157…)
x=ln(0.17157…)
Solve ex=0.26794…:x=ln(0.26794…)
ex=0.26794…
Apply exponent rules
ex=0.26794…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.26794…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.26794…)
x=ln(0.26794…)
Solve ex=3.73205…:x=ln(3.73205…)
ex=3.73205…
Apply exponent rules
ex=3.73205…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(3.73205…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(3.73205…)
x=ln(3.73205…)
Solve ex=5.82842…:x=ln(5.82842…)
ex=5.82842…
Apply exponent rules
ex=5.82842…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(5.82842…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(5.82842…)
x=ln(5.82842…)
x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4+4sin(x)=0tan(A)= 67/94sin(8x)-2cos(4x)=01.812=316*cos(1.496*x)+1.496solvefor t,cos(wt+d)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024