Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^4(x)=sec^2(x)tan^2(x)-2tan^4(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec4(x)=sec2(x)tan2(x)−2tan4(x)

Solution

NoSolutionforx∈R
Solution steps
sec4(x)=sec2(x)tan2(x)−2tan4(x)
Subtract sec2(x)tan2(x)−2tan4(x) from both sidessec4(x)−sec2(x)tan2(x)+2tan4(x)=0
Express with sin, cos
sec4(x)+2tan4(x)−sec2(x)tan2(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=(cos(x)1​)4+2tan4(x)−(cos(x)1​)2tan2(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=(cos(x)1​)4+2(cos(x)sin(x)​)4−(cos(x)1​)2(cos(x)sin(x)​)2
Simplify (cos(x)1​)4+2(cos(x)sin(x)​)4−(cos(x)1​)2(cos(x)sin(x)​)2:cos4(x)1+2sin4(x)−sin2(x)​
(cos(x)1​)4+2(cos(x)sin(x)​)4−(cos(x)1​)2(cos(x)sin(x)​)2
(cos(x)1​)4=cos4(x)1​
(cos(x)1​)4
Apply exponent rule: (ba​)c=bcac​=cos4(x)14​
Apply rule 1a=114=1=cos4(x)1​
2(cos(x)sin(x)​)4=cos4(x)2sin4(x)​
2(cos(x)sin(x)​)4
(cos(x)sin(x)​)4=cos4(x)sin4(x)​
(cos(x)sin(x)​)4
Apply exponent rule: (ba​)c=bcac​=cos4(x)sin4(x)​
=2⋅cos4(x)sin4(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos4(x)sin4(x)⋅2​
(cos(x)1​)2(cos(x)sin(x)​)2=cos4(x)sin2(x)​
(cos(x)1​)2(cos(x)sin(x)​)2
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
=(cos(x)sin(x)​)2cos2(x)1​
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)sin2(x)​
=cos2(x)1​⋅cos2(x)sin2(x)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=cos2(x)cos2(x)1⋅sin2(x)​
Multiply: 1⋅sin2(x)=sin2(x)=cos2(x)cos2(x)sin2(x)​
cos2(x)cos2(x)=cos4(x)
cos2(x)cos2(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos2(x)=cos2+2(x)=cos2+2(x)
Add the numbers: 2+2=4=cos4(x)
=cos4(x)sin2(x)​
=cos4(x)1​+cos4(x)2sin4(x)​−cos4(x)sin2(x)​
Apply rule ca​±cb​=ca±b​=cos4(x)1+2sin4(x)−sin2(x)​
=cos4(x)1+2sin4(x)−sin2(x)​
cos4(x)1−sin2(x)+2sin4(x)​=0
g(x)f(x)​=0⇒f(x)=01−sin2(x)+2sin4(x)=0
Solve by substitution
1−sin2(x)+2sin4(x)=0
Let: sin(x)=u1−u2+2u4=0
1−u2+2u4=0:u=22​22​−1​7​​+22​22​−1​​i,u=−22​22​−1​7​​−22​22​−1​​i,u=−22​22​−1​7​​+22​22​−1​​i,u=22​22​−1​7​​−22​22​−1​​i
1−u2+2u4=0
Write in the standard form an​xn+…+a1​x+a0​=02u4−u2+1=0
Rewrite the equation with a=u2 and a2=u42a2−a+1=0
Solve 2a2−a+1=0:a=41​+i47​​,a=41​−i47​​
2a2−a+1=0
Solve with the quadratic formula
2a2−a+1=0
Quadratic Equation Formula:
For a=2,b=−1,c=1a1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅1​​
a1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅1​​
Simplify (−1)2−4⋅2⋅1​:7​i
(−1)2−4⋅2⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multiply the numbers: 4⋅2⋅1=8=8
=1−8​
Subtract the numbers: 1−8=−7=−7​
Apply radical rule: −a​=−1​a​−7​=−1​7​=−1​7​
Apply imaginary number rule: −1​=i=7​i
a1,2​=2⋅2−(−1)±7​i​
Separate the solutionsa1​=2⋅2−(−1)+7​i​,a2​=2⋅2−(−1)−7​i​
a=2⋅2−(−1)+7​i​:41​+i47​​
2⋅2−(−1)+7​i​
Apply rule −(−a)=a=2⋅21+7​i​
Multiply the numbers: 2⋅2=4=41+7​i​
Rewrite 41+7​i​ in standard complex form: 41​+47​​i
41+7​i​
Apply the fraction rule: ca±b​=ca​±cb​41+7​i​=41​+47​i​=41​+47​i​
=41​+47​​i
a=2⋅2−(−1)−7​i​:41​−i47​​
2⋅2−(−1)−7​i​
Apply rule −(−a)=a=2⋅21−7​i​
Multiply the numbers: 2⋅2=4=41−7​i​
Rewrite 41−7​i​ in standard complex form: 41​−47​​i
41−7​i​
Apply the fraction rule: ca±b​=ca​±cb​41−7​i​=41​−47​i​=41​−47​i​
=41​−47​​i
The solutions to the quadratic equation are:a=41​+i47​​,a=41​−i47​​
a=41​+i47​​,a=41​−i47​​
Substitute back a=u2,solve for u
Solve u2=41​+i47​​:u=22​22​−1​7​​+22​22​−1​​i,u=−22​22​−1​7​​−22​22​−1​​i
u2=41​+i47​​
Substitute u=a+bi(a+bi)2=41​+i47​​
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=41​+i47​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=41​2ab=47​​​]
[a2−b2=41​2ab=47​​​]:​a=22​22​−1​7​​,a=−22​22​−1​7​​,​b=22​22​−1​​b=−22​22​−1​​​​
[a2−b2=41​2ab=47​​​]
Isolate afor 2ab=47​​:a=8b7​​
2ab=47​​
Divide both sides by 2b
2ab=47​​
Divide both sides by 2b2b2ab​=2b47​​​
Simplify
2b2ab​=2b47​​​
Simplify 2b2ab​:a
2b2ab​
Divide the numbers: 22​=1=bab​
Cancel the common factor: b=a
Simplify 2b47​​​:8b7​​
2b47​​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2b7​​
Multiply the numbers: 4⋅2=8=8b7​​
a=8b7​​
a=8b7​​
a=8b7​​
Plug the solutions a=8b7​​ into a2−b2=41​
For a2−b2=41​, subsitute a with 8b7​​:b=22​22​−1​​,b=−22​22​−1​​
For a2−b2=41​, subsitute a with 8b7​​(8b7​​)2−b2=41​
Solve (8b7​​)2−b2=41​:b=22​22​−1​​,b=−22​22​−1​​
(8b7​​)2−b2=41​
Multiply by LCM
(8b7​​)2−b2=41​
Simplify (8b7​​)2:64b27​
(8b7​​)2
Apply exponent rule: (ba​)c=bcac​=(8b)2(7​)2​
Apply exponent rule: (a⋅b)n=anbn(8b)2=82b2=82b2(7​)2​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=82b27​
82=64=64b27​
64b27​−b2=41​
Find Least Common Multiplier of 64b2,4:64b2
64b2,4
Lowest Common Multiplier (LCM)
Least Common Multiplier of 64,4:64
64,4
Least Common Multiplier (LCM)
Prime factorization of 64:2⋅2⋅2⋅2⋅2⋅2
64
64divides by 264=32⋅2=2⋅32
32divides by 232=16⋅2=2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 64 or 4=2⋅2⋅2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2⋅2⋅2=64=64
Compute an expression comprised of factors that appear either in 64b2 or 4=64b2
Multiply by LCM=64b264b27​⋅64b2−b2⋅64b2=41​⋅64b2
Simplify
64b27​⋅64b2−b2⋅64b2=41​⋅64b2
Simplify 64b27​⋅64b2:7
64b27​⋅64b2
Multiply fractions: a⋅cb​=ca⋅b​=64b27⋅64b2​
Cancel the common factor: 64=b27b2​
Cancel the common factor: b2=7
Simplify −b2⋅64b2:−64b4
−b2⋅64b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−64b2+2
Add the numbers: 2+2=4=−64b4
Simplify 41​⋅64b2:16b2
41​⋅64b2
Multiply fractions: a⋅cb​=ca⋅b​=41⋅64​b2
41⋅64​=16
41⋅64​
Multiply the numbers: 1⋅64=64=464​
Divide the numbers: 464​=16=16
=16b2
7−64b4=16b2
7−64b4=16b2
7−64b4=16b2
Solve 7−64b4=16b2:b=22​22​−1​​,b=−22​22​−1​​
7−64b4=16b2
Move 16b2to the left side
7−64b4=16b2
Subtract 16b2 from both sides7−64b4−16b2=16b2−16b2
Simplify7−64b4−16b2=0
7−64b4−16b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−64b4−16b2+7=0
Rewrite the equation with u=b2 and u2=b4−64u2−16u+7=0
Solve −64u2−16u+7=0:u=−81+22​​,u=822​−1​
−64u2−16u+7=0
Solve with the quadratic formula
−64u2−16u+7=0
Quadratic Equation Formula:
For a=−64,b=−16,c=7u1,2​=2(−64)−(−16)±(−16)2−4(−64)⋅7​​
u1,2​=2(−64)−(−16)±(−16)2−4(−64)⋅7​​
(−16)2−4(−64)⋅7​=322​
(−16)2−4(−64)⋅7​
Apply rule −(−a)=a=(−16)2+4⋅64⋅7​
Apply exponent rule: (−a)n=an,if n is even(−16)2=162=162+4⋅64⋅7​
Multiply the numbers: 4⋅64⋅7=1792=162+1792​
162=256=256+1792​
Add the numbers: 256+1792=2048=2048​
Prime factorization of 2048:211
2048
2048divides by 22048=1024⋅2=2⋅1024
1024divides by 21024=512⋅2=2⋅2⋅512
512divides by 2512=256⋅2=2⋅2⋅2⋅256
256divides by 2256=128⋅2=2⋅2⋅2⋅2⋅128
128divides by 2128=64⋅2=2⋅2⋅2⋅2⋅2⋅64
64divides by 264=32⋅2=2⋅2⋅2⋅2⋅2⋅2⋅32
32divides by 232=16⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
=211
=211​
Apply exponent rule: ab+c=ab⋅ac=210⋅2​
Apply radical rule: nab​=na​nb​=2​210​
Apply radical rule: nam​=anm​210​=2210​=25=252​
Refine=322​
u1,2​=2(−64)−(−16)±322​​
Separate the solutionsu1​=2(−64)−(−16)+322​​,u2​=2(−64)−(−16)−322​​
u=2(−64)−(−16)+322​​:−81+22​​
2(−64)−(−16)+322​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6416+322​​
Multiply the numbers: 2⋅64=128=−12816+322​​
Apply the fraction rule: −ba​=−ba​=−12816+322​​
Cancel 12816+322​​:81+22​​
12816+322​​
Factor 16+322​:16(1+22​)
16+322​
Rewrite as=16⋅1+16⋅22​
Factor out common term 16=16(1+22​)
=12816(1+22​)​
Cancel the common factor: 16=81+22​​
=−81+22​​
u=2(−64)−(−16)−322​​:822​−1​
2(−64)−(−16)−322​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6416−322​​
Multiply the numbers: 2⋅64=128=−12816−322​​
Apply the fraction rule: −b−a​=ba​16−322​=−(322​−16)=128322​−16​
Factor 322​−16:16(22​−1)
322​−16
Rewrite as=16⋅22​−16⋅1
Factor out common term 16=16(22​−1)
=12816(22​−1)​
Cancel the common factor: 16=822​−1​
The solutions to the quadratic equation are:u=−81+22​​,u=822​−1​
u=−81+22​​,u=822​−1​
Substitute back u=b2,solve for b
Solve b2=−81+22​​:No Solution for b∈R
b2=−81+22​​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=822​−1​:b=22​22​−1​​,b=−22​22​−1​​
b2=822​−1​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=822​−1​​,b=−822​−1​​
822​−1​​=22​22​−1​​
822​−1​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=8​22​−1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac23=22⋅2=22⋅2​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅2​=22​2​=22​2​
Apply radical rule: a2​=a,a≥022​=2=22​
=22​22​−1​​
−822​−1​​=−22​22​−1​​
−822​−1​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−8​22​−1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac23=22⋅2=22⋅2​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅2​=22​2​=22​2​
Apply radical rule: a2​=a,a≥022​=2=22​
=−22​22​−1​​
b=22​22​−1​​,b=−22​22​−1​​
The solutions are
b=22​22​−1​​,b=−22​22​−1​​
b=22​22​−1​​,b=−22​22​−1​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (8b7​​)2−b2 and compare to zero
Solve 8b=0:b=0
8b=0
Divide both sides by 8
8b=0
Divide both sides by 888b​=80​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=22​22​−1​​,b=−22​22​−1​​
Plug the solutions b=22​22​−1​​,b=−22​22​−1​​ into 2ab=47​​
For 2ab=47​​, subsitute b with 22​22​−1​​:a=22​22​−1​7​​
For 2ab=47​​, subsitute b with 22​22​−1​​2a22​22​−1​​=47​​
Solve 2a22​22​−1​​=47​​:a=22​22​−1​7​​
2a22​22​−1​​=47​​
Multiply both sides by 22​
2a22​22​−1​​=47​​
Multiply both sides by 22​2a22​22​−1​​⋅22​=47​⋅22​​
Simplify
2a22​22​−1​​⋅22​=47​⋅22​​
Simplify 2a22​22​−1​​⋅22​:2a22​−1​
2a22​22​−1​​⋅22​
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
=22a22​22​−1​​2​
Apply radical rule: a​=a21​2​=221​=22a22​22​−1​​⋅221​
22⋅221​=225​
22⋅221​
Apply exponent rule: ab⋅ac=ab+c22⋅221​=22+21​=22+21​
2+21​=25​
2+21​
Convert element to fraction: 2=22⋅2​=22⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2+1​
2⋅2+1=5
2⋅2+1
Multiply the numbers: 2⋅2=4=4+1
Add the numbers: 4+1=5=5
=25​
=225​
=225​a22​22​−1​​
Apply the fraction rule: a⋅cb​=ca⋅b​=22​225​a22​−1​​
Cancel 22​225​a22​−1​​:2a22​−1​
22​225​a22​−1​​
22​225​​=2
22​225​​
Simplify 2225​​:223​
2225​​
Apply exponent rule: xbxa​=xa−b=225​−1
25​−1=23​
25​−1
Convert element to fraction: 1=21⋅2​=−21⋅2​+25​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+5​
−1⋅2+5=3
−1⋅2+5
Multiply the numbers: 1⋅2=2=−2+5
Add/Subtract the numbers: −2+5=3=3
=23​
=223​
=2​223​​
Apply radical rule: a​=a21​2​=221​=221​223​​
Simplify 221​223​​:2
221​223​​
Apply exponent rule: xbxa​=xa−b=223​−21​
23​−21​=1
23​−21​
Apply rule ca​±cb​=ca±b​=23−1​
Subtract the numbers: 3−1=2=22​
Apply rule aa​=1=1
=21
Apply exponent rule: a1=a=2
=2
=2a22​−1​
=2a22​−1​
Simplify 47​⋅22​​:2​7​​
47​⋅22​​
Factor the number: 4=2⋅2=2⋅27​⋅22​​
Cancel the common factor: 2=27​2​​
Apply radical rule: a=a​a​2=2​2​=2​2​7​2​​
Cancel the common factor: 2​=2​7​​
2a22​−1​=2​7​​
2a22​−1​=2​7​​
2a22​−1​=2​7​​
Divide both sides by 222​−1​
2a22​−1​=2​7​​
Divide both sides by 222​−1​222​−1​2a22​−1​​=222​−1​2​7​​​
Simplify
222​−1​2a22​−1​​=222​−1​2​7​​​
Simplify 222​−1​2a22​−1​​:a
222​−1​2a22​−1​​
Cancel the common factor: 2=22​−1​a22​−1​​
Cancel the common factor: 22​−1​=a
Simplify 222​−1​2​7​​​:22​22​−1​7​​
222​−1​2​7​​​
Apply the fraction rule: cba​​=b⋅ca​=2​⋅222​−1​7​​
=22​22​−1​7​​
a=22​22​−1​7​​
a=22​22​−1​7​​
a=22​22​−1​7​​
For 2ab=47​​, subsitute b with −22​22​−1​​:a=−22​22​−1​7​​
For 2ab=47​​, subsitute b with −22​22​−1​​2a(−22​22​−1​​)=47​​
Solve 2a(−22​22​−1​​)=47​​:a=−22​22​−1​7​​
2a(−22​22​−1​​)=47​​
Divide both sides by 2(−22​22​−1​​)
2a(−22​22​−1​​)=47​​
Divide both sides by 2(−22​22​−1​​)2(−22​22​−1​​)2a(−22​22​−1​​)​=2(−22​22​−1​​)47​​​
Simplify
2(−22​22​−1​​)2a(−22​22​−1​​)​=2(−22​22​−1​​)47​​​
Simplify 2(−22​22​−1​​)2a(−22​22​−1​​)​:a
2(−22​22​−1​​)2a(−22​22​−1​​)​
Simplify 2(−22​22​−1​​)2a(−22​22​−1​​)​:−2⋅22​22​−1​​−2a22​22​−1​​​
2(−22​22​−1​​)2a(−22​22​−1​​)​
Apply rule: a(−b)=−ab2a(−22​22​−1​​)=−2a22​22​−1​​=2(−22​22​−1​​)−2a22​22​−1​​​
Apply rule: a(−b)=−ab2(−22​22​−1​​)=−2⋅22​22​−1​​=−2⋅22​22​−1​​−2a22​22​−1​​​
=−2⋅22​22​−1​​−2a22​22​−1​​​
Cancel the common factor: −2=22​22​−1​​a22​22​−1​​​
Cancel the common factor: 22​22​−1​​=a
Simplify 2(−22​22​−1​​)47​​​:−22​22​−1​7​​
2(−22​22​−1​​)47​​​
Apply the fraction rule: cba​​=b⋅ca​=4⋅2(−22​22​−1​​)7​​
Apply rule: a(−b)=−ab4⋅2(−22​22​−1​​)=−4⋅2⋅22​22​−1​​=−4⋅2⋅22​22​−1​​7​​
−4⋅2⋅22​22​−1​​=−2​⋅222​−1​
−4⋅2⋅22​22​−1​​
Convert 4to fraction :14​
4
Convert element to fraction: 4=14​=14​
=−14​⋅2⋅22​22​−1​​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−14​⋅12​⋅22​22​−1​​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​14​⋅12​⋅22​22​−1​​=1⋅1⋅22​4⋅222​−1​​=−1⋅1⋅22​4⋅222​−1​​
1⋅1⋅22​4⋅222​−1​​=2​⋅222​−1​
1⋅1⋅22​4⋅222​−1​​
Multiply the numbers: 1⋅1⋅2=2=22​4⋅222​−1​​
Cancel the common factor: 2=2​422​−1​​
Factor the number: 4=2⋅2=2​2⋅222​−1​​
Apply radical rule: a=a​a​2=2​2​=2​2​2​⋅222​−1​​
Cancel the common factor: 2​=2​⋅222​−1​
=−2​⋅222​−1​
=−2​⋅222​−1​7​​
Apply the fraction rule: −ba​=−ba​=−2​⋅222​−1​7​​
=−22​22​−1​7​​
a=−22​22​−1​7​​
a=−22​22​−1​7​​
a=−22​22​−1​7​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=41​
Remove the ones that don't agree with the equation.
Check the solution a=−22​22​−1​7​​,b=−22​22​−1​​:True
a2−b2=41​
Plug in a=−22​22​−1​7​​,b=−22​22​−1​​(−22​22​−1​7​​)2−(−22​22​−1​​)2=41​
Refine41​=41​
True
Check the solution a=22​22​−1​7​​,b=22​22​−1​​:True
a2−b2=41​
Plug in a=22​22​−1​7​​,b=22​22​−1​​(22​22​−1​7​​)2−(22​22​−1​​)2=41​
Refine41​=41​
True
Check the solutions by plugging them into 2ab=47​​
Remove the ones that don't agree with the equation.
Check the solution a=−22​22​−1​7​​,b=−22​22​−1​​:True
2ab=47​​
Plug in a=−22​22​−1​7​​,b=−22​22​−1​​2(−22​22​−1​7​​)(−22​22​−1​​)=47​​
Refine47​​=47​​
True
Check the solution a=22​22​−1​7​​,b=22​22​−1​​:True
2ab=47​​
Plug in a=22​22​−1​7​​,b=22​22​−1​​2⋅22​22​−1​7​​⋅22​22​−1​​=47​​
Refine47​​=47​​
True
Therefore, the final solutions for a2−b2=41​,2ab=47​​ are ​a=22​22​−1​7​​,a=−22​22​−1​7​​,​b=22​22​−1​​b=−22​22​−1​​​​
Substitute back u=a+biu=22​22​−1​7​​+22​22​−1​​i,u=−22​22​−1​7​​−22​22​−1​​i
Solve u2=41​−i47​​:u=−22​22​−1​7​​+22​22​−1​​i,u=22​22​−1​7​​−22​22​−1​​i
u2=41​−i47​​
Substitute u=a+bi(a+bi)2=41​−i47​​
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=41​−i47​​
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=41​2ab=−47​​​]
[a2−b2=41​2ab=−47​​​]:​a=−22​22​−1​7​​,a=22​22​−1​7​​,​b=22​22​−1​​b=−22​22​−1​​​​
[a2−b2=41​2ab=−47​​​]
Isolate afor 2ab=−47​​:a=−8b7​​
2ab=−47​​
Divide both sides by 2b
2ab=−47​​
Divide both sides by 2b2b2ab​=2b−47​​​
Simplify
2b2ab​=2b−47​​​
Simplify 2b2ab​:a
2b2ab​
Divide the numbers: 22​=1=bab​
Cancel the common factor: b=a
Simplify 2b−47​​​:−8b7​​
2b−47​​​
Apply the fraction rule: b−a​=−ba​=−2b47​​​
Apply the fraction rule: acb​​=c⋅ab​2b47​​​=4⋅2b7​​=−4⋅2b7​​
Multiply the numbers: 4⋅2=8=−8b7​​
a=−8b7​​
a=−8b7​​
a=−8b7​​
Plug the solutions a=−8b7​​ into a2−b2=41​
For a2−b2=41​, subsitute a with −8b7​​:b=22​22​−1​​,b=−22​22​−1​​
For a2−b2=41​, subsitute a with −8b7​​(−8b7​​)2−b2=41​
Solve (−8b7​​)2−b2=41​:b=22​22​−1​​,b=−22​22​−1​​
(−8b7​​)2−b2=41​
Multiply by LCM
(−8b7​​)2−b2=41​
Simplify (−8b7​​)2:64b27​
(−8b7​​)2
Apply exponent rule: (−a)n=an,if n is even(−8b7​​)2=(8b7​​)2=(8b7​​)2
Apply exponent rule: (ba​)c=bcac​=(8b)2(7​)2​
Apply exponent rule: (a⋅b)n=anbn(8b)2=82b2=82b2(7​)2​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=82b27​
82=64=64b27​
64b27​−b2=41​
Find Least Common Multiplier of 64b2,4:64b2
64b2,4
Lowest Common Multiplier (LCM)
Least Common Multiplier of 64,4:64
64,4
Least Common Multiplier (LCM)
Prime factorization of 64:2⋅2⋅2⋅2⋅2⋅2
64
64divides by 264=32⋅2=2⋅32
32divides by 232=16⋅2=2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 64 or 4=2⋅2⋅2⋅2⋅2⋅2
Multiply the numbers: 2⋅2⋅2⋅2⋅2⋅2=64=64
Compute an expression comprised of factors that appear either in 64b2 or 4=64b2
Multiply by LCM=64b264b27​⋅64b2−b2⋅64b2=41​⋅64b2
Simplify
64b27​⋅64b2−b2⋅64b2=41​⋅64b2
Simplify 64b27​⋅64b2:7
64b27​⋅64b2
Multiply fractions: a⋅cb​=ca⋅b​=64b27⋅64b2​
Cancel the common factor: 64=b27b2​
Cancel the common factor: b2=7
Simplify −b2⋅64b2:−64b4
−b2⋅64b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−64b2+2
Add the numbers: 2+2=4=−64b4
Simplify 41​⋅64b2:16b2
41​⋅64b2
Multiply fractions: a⋅cb​=ca⋅b​=41⋅64​b2
41⋅64​=16
41⋅64​
Multiply the numbers: 1⋅64=64=464​
Divide the numbers: 464​=16=16
=16b2
7−64b4=16b2
7−64b4=16b2
7−64b4=16b2
Solve 7−64b4=16b2:b=22​22​−1​​,b=−22​22​−1​​
7−64b4=16b2
Move 16b2to the left side
7−64b4=16b2
Subtract 16b2 from both sides7−64b4−16b2=16b2−16b2
Simplify7−64b4−16b2=0
7−64b4−16b2=0
Write in the standard form an​xn+…+a1​x+a0​=0−64b4−16b2+7=0
Rewrite the equation with u=b2 and u2=b4−64u2−16u+7=0
Solve −64u2−16u+7=0:u=−81+22​​,u=822​−1​
−64u2−16u+7=0
Solve with the quadratic formula
−64u2−16u+7=0
Quadratic Equation Formula:
For a=−64,b=−16,c=7u1,2​=2(−64)−(−16)±(−16)2−4(−64)⋅7​​
u1,2​=2(−64)−(−16)±(−16)2−4(−64)⋅7​​
(−16)2−4(−64)⋅7​=322​
(−16)2−4(−64)⋅7​
Apply rule −(−a)=a=(−16)2+4⋅64⋅7​
Apply exponent rule: (−a)n=an,if n is even(−16)2=162=162+4⋅64⋅7​
Multiply the numbers: 4⋅64⋅7=1792=162+1792​
162=256=256+1792​
Add the numbers: 256+1792=2048=2048​
Prime factorization of 2048:211
2048
2048divides by 22048=1024⋅2=2⋅1024
1024divides by 21024=512⋅2=2⋅2⋅512
512divides by 2512=256⋅2=2⋅2⋅2⋅256
256divides by 2256=128⋅2=2⋅2⋅2⋅2⋅128
128divides by 2128=64⋅2=2⋅2⋅2⋅2⋅2⋅64
64divides by 264=32⋅2=2⋅2⋅2⋅2⋅2⋅2⋅32
32divides by 232=16⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
=211
=211​
Apply exponent rule: ab+c=ab⋅ac=210⋅2​
Apply radical rule: nab​=na​nb​=2​210​
Apply radical rule: nam​=anm​210​=2210​=25=252​
Refine=322​
u1,2​=2(−64)−(−16)±322​​
Separate the solutionsu1​=2(−64)−(−16)+322​​,u2​=2(−64)−(−16)−322​​
u=2(−64)−(−16)+322​​:−81+22​​
2(−64)−(−16)+322​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6416+322​​
Multiply the numbers: 2⋅64=128=−12816+322​​
Apply the fraction rule: −ba​=−ba​=−12816+322​​
Cancel 12816+322​​:81+22​​
12816+322​​
Factor 16+322​:16(1+22​)
16+322​
Rewrite as=16⋅1+16⋅22​
Factor out common term 16=16(1+22​)
=12816(1+22​)​
Cancel the common factor: 16=81+22​​
=−81+22​​
u=2(−64)−(−16)−322​​:822​−1​
2(−64)−(−16)−322​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅6416−322​​
Multiply the numbers: 2⋅64=128=−12816−322​​
Apply the fraction rule: −b−a​=ba​16−322​=−(322​−16)=128322​−16​
Factor 322​−16:16(22​−1)
322​−16
Rewrite as=16⋅22​−16⋅1
Factor out common term 16=16(22​−1)
=12816(22​−1)​
Cancel the common factor: 16=822​−1​
The solutions to the quadratic equation are:u=−81+22​​,u=822​−1​
u=−81+22​​,u=822​−1​
Substitute back u=b2,solve for b
Solve b2=−81+22​​:No Solution for b∈R
b2=−81+22​​
x2 cannot be negative for x∈RNoSolutionforb∈R
Solve b2=822​−1​:b=22​22​−1​​,b=−22​22​−1​​
b2=822​−1​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
b=822​−1​​,b=−822​−1​​
822​−1​​=22​22​−1​​
822​−1​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=8​22​−1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac23=22⋅2=22⋅2​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅2​=22​2​=22​2​
Apply radical rule: a2​=a,a≥022​=2=22​
=22​22​−1​​
−822​−1​​=−22​22​−1​​
−822​−1​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−8​22​−1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac23=22⋅2=22⋅2​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅2​=22​2​=22​2​
Apply radical rule: a2​=a,a≥022​=2=22​
=−22​22​−1​​
b=22​22​−1​​,b=−22​22​−1​​
The solutions are
b=22​22​−1​​,b=−22​22​−1​​
b=22​22​−1​​,b=−22​22​−1​​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (−8b7​​)2−b2 and compare to zero
Solve 8b=0:b=0
8b=0
Divide both sides by 8
8b=0
Divide both sides by 888b​=80​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=22​22​−1​​,b=−22​22​−1​​
Plug the solutions b=22​22​−1​​,b=−22​22​−1​​ into 2ab=−47​​
For 2ab=−47​​, subsitute b with 22​22​−1​​:a=−22​22​−1​7​​
For 2ab=−47​​, subsitute b with 22​22​−1​​2a22​22​−1​​=−47​​
Solve 2a22​22​−1​​=−47​​:a=−22​22​−1​7​​
2a22​22​−1​​=−47​​
Multiply both sides by 22​
2a22​22​−1​​=−47​​
Multiply both sides by 22​2a22​22​−1​​⋅22​=(−47​​)⋅22​
Simplify
2a22​22​−1​​⋅22​=(−47​​)⋅22​
Simplify 2a22​22​−1​​⋅22​:2a22​−1​
2a22​22​−1​​⋅22​
2⋅2=22
2⋅2
Apply exponent rule: ab⋅ac=ab+c2⋅2=21+1=21+1
Add the numbers: 1+1=2=22
=22a22​22​−1​​2​
Apply radical rule: a​=a21​2​=221​=22a22​22​−1​​⋅221​
22⋅221​=225​
22⋅221​
Apply exponent rule: ab⋅ac=ab+c22⋅221​=22+21​=22+21​
2+21​=25​
2+21​
Convert element to fraction: 2=22⋅2​=22⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2+1​
2⋅2+1=5
2⋅2+1
Multiply the numbers: 2⋅2=4=4+1
Add the numbers: 4+1=5=5
=25​
=225​
=225​a22​22​−1​​
Apply the fraction rule: a⋅cb​=ca⋅b​=22​225​a22​−1​​
Cancel 22​225​a22​−1​​:2a22​−1​
22​225​a22​−1​​
22​225​​=2
22​225​​
Simplify 2225​​:223​
2225​​
Apply exponent rule: xbxa​=xa−b=225​−1
25​−1=23​
25​−1
Convert element to fraction: 1=21⋅2​=−21⋅2​+25​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−1⋅2+5​
−1⋅2+5=3
−1⋅2+5
Multiply the numbers: 1⋅2=2=−2+5
Add/Subtract the numbers: −2+5=3=3
=23​
=223​
=2​223​​
Apply radical rule: a​=a21​2​=221​=221​223​​
Simplify 221​223​​:2
221​223​​
Apply exponent rule: xbxa​=xa−b=223​−21​
23​−21​=1
23​−21​
Apply rule ca​±cb​=ca±b​=23−1​
Subtract the numbers: 3−1=2=22​
Apply rule aa​=1=1
=21
Apply exponent rule: a1=a=2
=2
=2a22​−1​
=2a22​−1​
Simplify (−47​​)⋅22​:−27​​2​
(−47​​)⋅22​
Apply rule: (−a)=−a(−47​​)=−47​​=−47​​⋅22​
−47​​⋅22​=−27​​2​
−47​​⋅22​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−47​​⋅12​2​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​47​​⋅12​=4⋅17​⋅2​=−4⋅17​⋅2​2​
4⋅17​⋅2​=27​​
4⋅17​⋅2​
Multiply the numbers: 4⋅1=4=47​⋅2​
Factor the number: 4=2⋅2=2⋅27​⋅2​
Cancel the common factor: 2=27​​
=−27​​2​
=−27​​2​
2a22​−1​=−27​​2​
2a22​−1​=−27​​2​
2a22​−1​=−27​​2​
Divide both sides by 222​−1​
2a22​−1​=−27​​2​
Divide both sides by 222​−1​222​−1​2a22​−1​​=222​−1​−27​​2​​
Simplify
222​−1​2a22​−1​​=222​−1​−27​​2​​
Simplify 222​−1​2a22​−1​​:a
222​−1​2a22​−1​​
Cancel the common factor: 2=22​−1​a22​−1​​
Cancel the common factor: 22​−1​=a
Simplify 222​−1​−27​​2​​:−22​22​−1​7​​
222​−1​−27​​2​​
Apply radical rule: a=a​a​2=2​2​=2​2​22​−1​−27​​2​​
Cancel the common factor: 2​=2​22​−1​−27​​​
2​22​−1​−27​​​=−22​22​−1​7​​
2​22​−1​−27​​​
Apply the fraction rule: b−a​=−ba​=−2​22​−1​27​​​
Apply the fraction rule: cba​​=b⋅ca​2​22​−1​27​​​=22​22​−1​7​​=−22​22​−1​7​​
=−22​22​−1​7​​
a=−22​22​−1​7​​
a=−22​22​−1​7​​
a=−22​22​−1​7​​
For 2ab=−47​​, subsitute b with −22​22​−1​​:a=22​22​−1​7​​
For 2ab=−47​​, subsitute b with −22​22​−1​​2a(−22​22​−1​​)=−47​​
Solve 2a(−22​22​−1​​)=−47​​:a=22​22​−1​7​​
2a(−22​22​−1​​)=−47​​
Divide both sides by 2(−22​22​−1​​)
2a(−22​22​−1​​)=−47​​
Divide both sides by 2(−22​22​−1​​)2(−22​22​−1​​)2a(−22​22​−1​​)​=2(−22​22​−1​​)−47​​​
Simplify
2(−22​22​−1​​)2a(−22​22​−1​​)​=2(−22​22​−1​​)−47​​​
Simplify 2(−22​22​−1​​)2a(−22​22​−1​​)​:a
2(−22​22​−1​​)2a(−22​22​−1​​)​
Simplify 2(−22​22​−1​​)2a(−22​22​−1​​)​:−2⋅22​22​−1​​−2a22​22​−1​​​
2(−22​22​−1​​)2a(−22​22​−1​​)​
Apply rule: a(−b)=−ab2a(−22​22​−1​​)=−2a22​22​−1​​=2(−22​22​−1​​)−2a22​22​−1​​​
Apply rule: a(−b)=−ab2(−22​22​−1​​)=−2⋅22​22​−1​​=−2⋅22​22​−1​​−2a22​22​−1​​​
=−2⋅22​22​−1​​−2a22​22​−1​​​
Cancel the common factor: −2=22​22​−1​​a22​22​−1​​​
Cancel the common factor: 22​22​−1​​=a
Simplify 2(−22​22​−1​​)−47​​​:22​22​−1​7​​
2(−22​22​−1​​)−47​​​
Apply the fraction rule: b−a​=−ba​=−2(−22​22​−1​​)47​​​
Apply rule: a(−b)=−ab2(−22​22​−1​​)=−2⋅22​22​−1​​=−−2⋅22​22​−1​​47​​​
−2⋅22​22​−1​​=−2​22​−1​​
−2⋅22​22​−1​​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−12​⋅22​22​−1​​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​12​⋅22​22​−1​​=1⋅22​222​−1​​=−1⋅22​222​−1​​
1⋅22​222​−1​​=2​22​−1​​
1⋅22​222​−1​​
Multiply the numbers: 1⋅2=2=22​222​−1​​
Cancel the common factor: 2=2​22​−1​​
=−2​22​−1​​
=−−2​22​−1​​47​​​
Apply the fraction rule: −ba​=−ba​−2​22​−1​​47​​​=−2​22​−1​​47​​​=−​−2​22​−1​​47​​​​
Apply rule: −(−a)=a−​−2​22​−1​​47​​​​=2​22​−1​​47​​​=2​22​−1​​47​​​
Apply the fraction rule: dc​ba​​=b⋅ca⋅d​=422​−1​7​2​​
Cancel 422​−1​7​2​​:2​⋅222​−1​7​​
422​−1​7​2​​
Factor the number: 4=2⋅2=2⋅222​−1​7​2​​
Apply radical rule: a=a​a​2=2​2​=2​2​⋅222​−1​7​2​​
Cancel the common factor: 2​=2​⋅222​−1​7​​
=2​⋅222​−1​7​​
=22​22​−1​7​​
a=22​22​−1​7​​
a=22​22​−1​7​​
a=22​22​−1​7​​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=41​
Remove the ones that don't agree with the equation.
Check the solution a=22​22​−1​7​​,b=−22​22​−1​​:True
a2−b2=41​
Plug in a=22​22​−1​7​​,b=−22​22​−1​​(22​22​−1​7​​)2−(−22​22​−1​​)2=41​
Refine41​=41​
True
Check the solution a=−22​22​−1​7​​,b=22​22​−1​​:True
a2−b2=41​
Plug in a=−22​22​−1​7​​,b=22​22​−1​​(−22​22​−1​7​​)2−(22​22​−1​​)2=41​
Refine41​=41​
True
Check the solutions by plugging them into 2ab=−47​​
Remove the ones that don't agree with the equation.
Check the solution a=22​22​−1​7​​,b=−22​22​−1​​:True
2ab=−47​​
Plug in a=22​22​−1​7​​,b=−22​22​−1​​2⋅22​22​−1​7​​(−22​22​−1​​)=−47​​
Refine−47​​=−47​​
True
Check the solution a=−22​22​−1​7​​,b=22​22​−1​​:True
2ab=−47​​
Plug in a=−22​22​−1​7​​,b=22​22​−1​​2(−22​22​−1​7​​)22​22​−1​​=−47​​
Refine−47​​=−47​​
True
Therefore, the final solutions for a2−b2=41​,2ab=−47​​ are ​a=−22​22​−1​7​​,a=22​22​−1​7​​,​b=22​22​−1​​b=−22​22​−1​​​​
Substitute back u=a+biu=−22​22​−1​7​​+22​22​−1​​i,u=22​22​−1​7​​−22​22​−1​​i
The solutions are
u=22​22​−1​7​​+22​22​−1​​i,u=−22​22​−1​7​​−22​22​−1​​i,u=−22​22​−1​7​​+22​22​−1​​i,u=22​22​−1​7​​−22​22​−1​​i
Substitute back u=sin(x)sin(x)=22​22​−1​7​​+22​22​−1​​i,sin(x)=−22​22​−1​7​​−22​22​−1​​i,sin(x)=−22​22​−1​7​​+22​22​−1​​i,sin(x)=22​22​−1​7​​−22​22​−1​​i
sin(x)=22​22​−1​7​​+22​22​−1​​i,sin(x)=−22​22​−1​7​​−22​22​−1​​i,sin(x)=−22​22​−1​7​​+22​22​−1​​i,sin(x)=22​22​−1​7​​−22​22​−1​​i
sin(x)=22​22​−1​7​​+22​22​−1​​i:No Solution
sin(x)=22​22​−1​7​​+22​22​−1​​i
Simplify 22​22​−1​7​​+22​22​−1​​i:28−14+282​​+4−7+142​​​+i42​−1+22​​​
22​22​−1​7​​+22​22​−1​​i
22​22​−1​7​​=28(47​+14​)22​−1​​
22​22​−1​7​​
Multiply by the conjugate 2​2​​=22​22​−1​2​7​2​​
7​2​=14​
7​2​
Apply radical rule: a​b​=a⋅b​7​2​=7⋅2​=7⋅2​
Multiply the numbers: 7⋅2=14=14​
22​22​−1​2​=422​−1​
22​22​−1​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=22​−1​⋅21+21​+21​
21+21​+21​=22
21+21​+21​
Combine the fractions 21​+21​:1
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=21+1
Add the numbers: 1+1=2=22
=2222​−1​
22=4=422​−1​
=422​−1​14​​
Multiply by the conjugate 22​−1​22​−1​​=422​−1​22​−1​14​22​−1​​
422​−1​22​−1​=82​−4
422​−1​22​−1​
Apply radical rule: a​a​=a22​−1​22​−1​=22​−1=4(22​−1)
Apply the distributive law: a(b−c)=ab−aca=4,b=22​,c=1=4⋅22​−4⋅1
Simplify 4⋅22​−4⋅1:82​−4
4⋅22​−4⋅1
Multiply the numbers: 4⋅2=8=82​−4⋅1
Multiply the numbers: 4⋅1=4=82​−4
=82​−4
=82​−414​22​−1​​
Multiply by the conjugate 82​+482​+4​=(82​−4)(82​+4)14​22​−1​(82​+4)​
14​22​−1​(82​+4)=167​22​−1​+414​22​−1​
14​22​−1​(82​+4)
=14​(82​+4)22​−1​
Apply the distributive law: a(b+c)=ab+aca=14​22​−1​,b=82​,c=4=14​22​−1​⋅82​+14​22​−1​⋅4
=814​2​22​−1​+414​22​−1​
814​2​22​−1​=167​22​−1​
814​2​22​−1​
Factor integer 8=23=2314​2​22​−1​
Factor integer 14=2⋅7=232⋅7​2​22​−1​
Apply radical rule: nab​=na​nb​2⋅7​=2​7​=232​7​2​22​−1​
Apply radical rule: a​a​=a2​2​=2=23⋅27​22​−1​
Apply exponent rule: ab⋅ac=ab+c23⋅2=23+1=7​⋅23+122​−1​
Add the numbers: 3+1=4=7​⋅2422​−1​
24=16=167​22​−1​
=167​22​−1​+414​22​−1​
(82​−4)(82​+4)=112
(82​−4)(82​+4)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=82​,b=4=(82​)2−42
Simplify (82​)2−42:112
(82​)2−42
(82​)2=128
(82​)2
Apply exponent rule: (a⋅b)n=anbn=82(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=82⋅2
82=64=64⋅2
Multiply the numbers: 64⋅2=128=128
42=16
42
42=16=16
=128−16
Subtract the numbers: 128−16=112=112
=112
=112167​22​−1​+414​22​−1​​
Factor 167​22​−1​+414​22​−1​:4−1+22​​(47​+14​)
167​22​−1​+414​22​−1​
Rewrite as=4⋅4−1+22​​7​+4−1+22​​14​
Factor out common term 4−1+22​​=4−1+22​​(47​+14​)
=1124−1+22​​(47​+14​)​
Cancel the common factor: 4=28(47​+14​)22​−1​​
22​22​−1​​i=i42​22​−1​​
22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=i42​22​−1​​
=28(47​+14​)22​−1​​+i42​22​−1​​
Rewrite 28(47​+14​)22​−1​​+42​22​−1​​i in standard complex form: 284142​−7​+282​−14​​+42​22​−1​​i
28(47​+14​)22​−1​​+42​22​−1​​i
28(47​+14​)22​−1​​=284142​−7​+282​−14​​
28(47​+14​)22​−1​​
Expand (47​+14​)22​−1​:4142​−7​+282​−14​
(47​+14​)22​−1​
Apply the distributive law: a(b+c)=ab+aca=22​−1​,b=47​,c=14​=22​−1​⋅47​+22​−1​14​
=47​22​−1​+14​22​−1​
Simplify 47​22​−1​+14​22​−1​:4142​−7​+282​−14​
47​22​−1​+14​22​−1​
47​22​−1​=4142​−7​
47​22​−1​
Apply radical rule: a​b​=a⋅b​7​22​−1​=7(22​−1)​=47(22​−1)​
Expand 7(22​−1):142​−7
7(22​−1)
Apply the distributive law: a(b−c)=ab−aca=7,b=22​,c=1=7⋅22​−7⋅1
Simplify 7⋅22​−7⋅1:142​−7
7⋅22​−7⋅1
Multiply the numbers: 7⋅2=14=142​−7⋅1
Multiply the numbers: 7⋅1=7=142​−7
=142​−7
=4142​−7​
14​22​−1​=282​−14​
14​22​−1​
Apply radical rule: a​b​=a⋅b​14​22​−1​=14(22​−1)​=14(22​−1)​
Expand 14(22​−1):282​−14
14(22​−1)
Apply the distributive law: a(b−c)=ab−aca=14,b=22​,c=1=14⋅22​−14⋅1
Simplify 14⋅22​−14⋅1:282​−14
14⋅22​−14⋅1
Multiply the numbers: 14⋅2=28=282​−14⋅1
Multiply the numbers: 14⋅1=14=282​−14
=282​−14
=282​−14​
=4142​−7​+282​−14​
=4142​−7​+282​−14​
=284142​−7​+282​−14​​
42​22​−1​​i=22​i22​−1​​
42​22​−1​​i
42​22​−1​​=22​22​−1​​
42​22​−1​​
Factor 4:22
Factor 4=22
=222​22​−1​​
Cancel 222​22​−1​​:223​22​−1​​
222​22​−1​​
Apply radical rule: na​=an1​2​=221​=22221​22​−1​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​22​−1​​
Subtract the numbers: 2−21​=23​=223​22​−1​​
=223​22​−1​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​22​−1​​
=i22​22​−1​​
Multiply fractions: a⋅cb​=ca⋅b​=22​22​−1​i​
=284142​−7​+282​−14​​+22​i22​−1​​
Apply the fraction rule: ca±b​=ca​±cb​284142​−7​+282​−14​​=284142​−7​​+28282​−14​​=284142​−7​​+28282​−14​​+22​i22​−1​​
Cancel 284142​−7​​:7142​−7​​
284142​−7​​
Cancel the common factor: 4=7142​−7​​
=7142​−7​​+28282​−14​​+22​i22​−1​​
Group the real part and the imaginary part of the complex number=(7142​−7​​+28282​−14​​)+22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=(7142​−7​​+28282​−14​​)+42​22​−1​​i
7142​−7​​+28282​−14​​=284142​−7​+282​−14​​
7142​−7​​+28282​−14​​
Least Common Multiplier of 7,28:28
7,28
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 28:2⋅2⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 28=7⋅2⋅2
Multiply the numbers: 7⋅2⋅2=28=28
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 28
For 7142​−7​​:multiply the denominator and numerator by 47142​−7​​=7⋅4142​−7​⋅4​=28142​−7​⋅4​
=28142​−7​⋅4​+28282​−14​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=28142​−7​⋅4+282​−14​​
=284142​−7​+282​−14​​+42​22​−1​​i
=284142​−7​+282​−14​​+42​22​−1​​i
NoSolution
sin(x)=−22​22​−1​7​​−22​22​−1​​i:No Solution
sin(x)=−22​22​−1​7​​−22​22​−1​​i
Simplify −22​22​−1​7​​−22​22​−1​​i:28−−14+282​​−4−7+142​​​−i42​−1+22​​​
−22​22​−1​7​​−22​22​−1​​i
22​22​−1​7​​=28(47​+14​)22​−1​​
22​22​−1​7​​
Multiply by the conjugate 2​2​​=22​22​−1​2​7​2​​
7​2​=14​
7​2​
Apply radical rule: a​b​=a⋅b​7​2​=7⋅2​=7⋅2​
Multiply the numbers: 7⋅2=14=14​
22​22​−1​2​=422​−1​
22​22​−1​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=22​−1​⋅21+21​+21​
21+21​+21​=22
21+21​+21​
Combine the fractions 21​+21​:1
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=21+1
Add the numbers: 1+1=2=22
=2222​−1​
22=4=422​−1​
=422​−1​14​​
Multiply by the conjugate 22​−1​22​−1​​=422​−1​22​−1​14​22​−1​​
422​−1​22​−1​=82​−4
422​−1​22​−1​
Apply radical rule: a​a​=a22​−1​22​−1​=22​−1=4(22​−1)
Apply the distributive law: a(b−c)=ab−aca=4,b=22​,c=1=4⋅22​−4⋅1
Simplify 4⋅22​−4⋅1:82​−4
4⋅22​−4⋅1
Multiply the numbers: 4⋅2=8=82​−4⋅1
Multiply the numbers: 4⋅1=4=82​−4
=82​−4
=82​−414​22​−1​​
Multiply by the conjugate 82​+482​+4​=(82​−4)(82​+4)14​22​−1​(82​+4)​
14​22​−1​(82​+4)=167​22​−1​+414​22​−1​
14​22​−1​(82​+4)
=14​(82​+4)22​−1​
Apply the distributive law: a(b+c)=ab+aca=14​22​−1​,b=82​,c=4=14​22​−1​⋅82​+14​22​−1​⋅4
=814​2​22​−1​+414​22​−1​
814​2​22​−1​=167​22​−1​
814​2​22​−1​
Factor integer 8=23=2314​2​22​−1​
Factor integer 14=2⋅7=232⋅7​2​22​−1​
Apply radical rule: nab​=na​nb​2⋅7​=2​7​=232​7​2​22​−1​
Apply radical rule: a​a​=a2​2​=2=23⋅27​22​−1​
Apply exponent rule: ab⋅ac=ab+c23⋅2=23+1=7​⋅23+122​−1​
Add the numbers: 3+1=4=7​⋅2422​−1​
24=16=167​22​−1​
=167​22​−1​+414​22​−1​
(82​−4)(82​+4)=112
(82​−4)(82​+4)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=82​,b=4=(82​)2−42
Simplify (82​)2−42:112
(82​)2−42
(82​)2=128
(82​)2
Apply exponent rule: (a⋅b)n=anbn=82(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=82⋅2
82=64=64⋅2
Multiply the numbers: 64⋅2=128=128
42=16
42
42=16=16
=128−16
Subtract the numbers: 128−16=112=112
=112
=112167​22​−1​+414​22​−1​​
Factor 167​22​−1​+414​22​−1​:4−1+22​​(47​+14​)
167​22​−1​+414​22​−1​
Rewrite as=4⋅4−1+22​​7​+4−1+22​​14​
Factor out common term 4−1+22​​=4−1+22​​(47​+14​)
=1124−1+22​​(47​+14​)​
Cancel the common factor: 4=28(47​+14​)22​−1​​
22​22​−1​​i=i42​22​−1​​
22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=i42​22​−1​​
=−28(47​+14​)22​−1​​−i42​22​−1​​
Rewrite −28(47​+14​)22​−1​​−42​22​−1​​i in standard complex form: 28−4142​−7​−282​−14​​−42​22​−1​​i
−28(47​+14​)22​−1​​−42​22​−1​​i
28(47​+14​)22​−1​​=284142​−7​+282​−14​​
28(47​+14​)22​−1​​
Expand (47​+14​)22​−1​:4142​−7​+282​−14​
(47​+14​)22​−1​
Apply the distributive law: a(b+c)=ab+aca=22​−1​,b=47​,c=14​=22​−1​⋅47​+22​−1​14​
=47​22​−1​+14​22​−1​
Simplify 47​22​−1​+14​22​−1​:4142​−7​+282​−14​
47​22​−1​+14​22​−1​
47​22​−1​=4142​−7​
47​22​−1​
Apply radical rule: a​b​=a⋅b​7​22​−1​=7(22​−1)​=47(22​−1)​
Expand 7(22​−1):142​−7
7(22​−1)
Apply the distributive law: a(b−c)=ab−aca=7,b=22​,c=1=7⋅22​−7⋅1
Simplify 7⋅22​−7⋅1:142​−7
7⋅22​−7⋅1
Multiply the numbers: 7⋅2=14=142​−7⋅1
Multiply the numbers: 7⋅1=7=142​−7
=142​−7
=4142​−7​
14​22​−1​=282​−14​
14​22​−1​
Apply radical rule: a​b​=a⋅b​14​22​−1​=14(22​−1)​=14(22​−1)​
Expand 14(22​−1):282​−14
14(22​−1)
Apply the distributive law: a(b−c)=ab−aca=14,b=22​,c=1=14⋅22​−14⋅1
Simplify 14⋅22​−14⋅1:282​−14
14⋅22​−14⋅1
Multiply the numbers: 14⋅2=28=282​−14⋅1
Multiply the numbers: 14⋅1=14=282​−14
=282​−14
=282​−14​
=4142​−7​+282​−14​
=4142​−7​+282​−14​
=284142​−7​+282​−14​​
42​22​−1​​i=22​i22​−1​​
42​22​−1​​i
42​22​−1​​=22​22​−1​​
42​22​−1​​
Factor 4:22
Factor 4=22
=222​22​−1​​
Cancel 222​22​−1​​:223​22​−1​​
222​22​−1​​
Apply radical rule: na​=an1​2​=221​=22221​22​−1​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​22​−1​​
Subtract the numbers: 2−21​=23​=223​22​−1​​
=223​22​−1​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​22​−1​​
=i22​22​−1​​
Multiply fractions: a⋅cb​=ca⋅b​=22​22​−1​i​
=−284142​−7​+282​−14​​−22​i22​−1​​
Apply the fraction rule: ca±b​=ca​±cb​284142​−7​+282​−14​​=−(284142​−7​​)−(28282​−14​​)=−(284142​−7​​)−(28282​−14​​)−22​i22​−1​​
Remove parentheses: (a)=a=−284142​−7​​−28282​−14​​−22​i22​−1​​
Cancel 284142​−7​​:7142​−7​​
284142​−7​​
Cancel the common factor: 4=7142​−7​​
=−7142​−7​​−28282​−14​​−22​i22​−1​​
Group the real part and the imaginary part of the complex number=(−7142​−7​​−28282​−14​​)−22​22​−1​​i
−22​22​−1​​=−42​22​−1​​
−22​22​−1​​
Multiply by the conjugate 2​2​​=−22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​22​−1​​
=(−7142​−7​​−28282​−14​​)−42​22​−1​​i
−7142​−7​​−28282​−14​​=28−4142​−7​−282​−14​​
−7142​−7​​−28282​−14​​
Least Common Multiplier of 7,28:28
7,28
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 28:2⋅2⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 28=7⋅2⋅2
Multiply the numbers: 7⋅2⋅2=28=28
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 28
For 7142​−7​​:multiply the denominator and numerator by 47142​−7​​=7⋅4142​−7​⋅4​=28142​−7​⋅4​
=−28142​−7​⋅4​−28282​−14​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=28−142​−7​⋅4−282​−14​​
=28−4142​−7​−282​−14​​−42​22​−1​​i
=28−4142​−7​−282​−14​​−42​22​−1​​i
NoSolution
sin(x)=−22​22​−1​7​​+22​22​−1​​i:No Solution
sin(x)=−22​22​−1​7​​+22​22​−1​​i
Simplify −22​22​−1​7​​+22​22​−1​​i:28−−14+282​​−4−7+142​​​+i42​−1+22​​​
−22​22​−1​7​​+22​22​−1​​i
22​22​−1​7​​=28(47​+14​)22​−1​​
22​22​−1​7​​
Multiply by the conjugate 2​2​​=22​22​−1​2​7​2​​
7​2​=14​
7​2​
Apply radical rule: a​b​=a⋅b​7​2​=7⋅2​=7⋅2​
Multiply the numbers: 7⋅2=14=14​
22​22​−1​2​=422​−1​
22​22​−1​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=22​−1​⋅21+21​+21​
21+21​+21​=22
21+21​+21​
Combine the fractions 21​+21​:1
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=21+1
Add the numbers: 1+1=2=22
=2222​−1​
22=4=422​−1​
=422​−1​14​​
Multiply by the conjugate 22​−1​22​−1​​=422​−1​22​−1​14​22​−1​​
422​−1​22​−1​=82​−4
422​−1​22​−1​
Apply radical rule: a​a​=a22​−1​22​−1​=22​−1=4(22​−1)
Apply the distributive law: a(b−c)=ab−aca=4,b=22​,c=1=4⋅22​−4⋅1
Simplify 4⋅22​−4⋅1:82​−4
4⋅22​−4⋅1
Multiply the numbers: 4⋅2=8=82​−4⋅1
Multiply the numbers: 4⋅1=4=82​−4
=82​−4
=82​−414​22​−1​​
Multiply by the conjugate 82​+482​+4​=(82​−4)(82​+4)14​22​−1​(82​+4)​
14​22​−1​(82​+4)=167​22​−1​+414​22​−1​
14​22​−1​(82​+4)
=14​(82​+4)22​−1​
Apply the distributive law: a(b+c)=ab+aca=14​22​−1​,b=82​,c=4=14​22​−1​⋅82​+14​22​−1​⋅4
=814​2​22​−1​+414​22​−1​
814​2​22​−1​=167​22​−1​
814​2​22​−1​
Factor integer 8=23=2314​2​22​−1​
Factor integer 14=2⋅7=232⋅7​2​22​−1​
Apply radical rule: nab​=na​nb​2⋅7​=2​7​=232​7​2​22​−1​
Apply radical rule: a​a​=a2​2​=2=23⋅27​22​−1​
Apply exponent rule: ab⋅ac=ab+c23⋅2=23+1=7​⋅23+122​−1​
Add the numbers: 3+1=4=7​⋅2422​−1​
24=16=167​22​−1​
=167​22​−1​+414​22​−1​
(82​−4)(82​+4)=112
(82​−4)(82​+4)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=82​,b=4=(82​)2−42
Simplify (82​)2−42:112
(82​)2−42
(82​)2=128
(82​)2
Apply exponent rule: (a⋅b)n=anbn=82(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=82⋅2
82=64=64⋅2
Multiply the numbers: 64⋅2=128=128
42=16
42
42=16=16
=128−16
Subtract the numbers: 128−16=112=112
=112
=112167​22​−1​+414​22​−1​​
Factor 167​22​−1​+414​22​−1​:4−1+22​​(47​+14​)
167​22​−1​+414​22​−1​
Rewrite as=4⋅4−1+22​​7​+4−1+22​​14​
Factor out common term 4−1+22​​=4−1+22​​(47​+14​)
=1124−1+22​​(47​+14​)​
Cancel the common factor: 4=28(47​+14​)22​−1​​
22​22​−1​​i=i42​22​−1​​
22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=i42​22​−1​​
=−28(47​+14​)22​−1​​+i42​22​−1​​
Rewrite −28(47​+14​)22​−1​​+42​22​−1​​i in standard complex form: 28−4142​−7​−282​−14​​+42​22​−1​​i
−28(47​+14​)22​−1​​+42​22​−1​​i
28(47​+14​)22​−1​​=284142​−7​+282​−14​​
28(47​+14​)22​−1​​
Expand (47​+14​)22​−1​:4142​−7​+282​−14​
(47​+14​)22​−1​
Apply the distributive law: a(b+c)=ab+aca=22​−1​,b=47​,c=14​=22​−1​⋅47​+22​−1​14​
=47​22​−1​+14​22​−1​
Simplify 47​22​−1​+14​22​−1​:4142​−7​+282​−14​
47​22​−1​+14​22​−1​
47​22​−1​=4142​−7​
47​22​−1​
Apply radical rule: a​b​=a⋅b​7​22​−1​=7(22​−1)​=47(22​−1)​
Expand 7(22​−1):142​−7
7(22​−1)
Apply the distributive law: a(b−c)=ab−aca=7,b=22​,c=1=7⋅22​−7⋅1
Simplify 7⋅22​−7⋅1:142​−7
7⋅22​−7⋅1
Multiply the numbers: 7⋅2=14=142​−7⋅1
Multiply the numbers: 7⋅1=7=142​−7
=142​−7
=4142​−7​
14​22​−1​=282​−14​
14​22​−1​
Apply radical rule: a​b​=a⋅b​14​22​−1​=14(22​−1)​=14(22​−1)​
Expand 14(22​−1):282​−14
14(22​−1)
Apply the distributive law: a(b−c)=ab−aca=14,b=22​,c=1=14⋅22​−14⋅1
Simplify 14⋅22​−14⋅1:282​−14
14⋅22​−14⋅1
Multiply the numbers: 14⋅2=28=282​−14⋅1
Multiply the numbers: 14⋅1=14=282​−14
=282​−14
=282​−14​
=4142​−7​+282​−14​
=4142​−7​+282​−14​
=284142​−7​+282​−14​​
42​22​−1​​i=22​i22​−1​​
42​22​−1​​i
42​22​−1​​=22​22​−1​​
42​22​−1​​
Factor 4:22
Factor 4=22
=222​22​−1​​
Cancel 222​22​−1​​:223​22​−1​​
222​22​−1​​
Apply radical rule: na​=an1​2​=221​=22221​22​−1​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​22​−1​​
Subtract the numbers: 2−21​=23​=223​22​−1​​
=223​22​−1​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​22​−1​​
=i22​22​−1​​
Multiply fractions: a⋅cb​=ca⋅b​=22​22​−1​i​
=−284142​−7​+282​−14​​+22​i22​−1​​
Apply the fraction rule: ca±b​=ca​±cb​284142​−7​+282​−14​​=−(284142​−7​​)−(28282​−14​​)=−(284142​−7​​)−(28282​−14​​)+22​i22​−1​​
Remove parentheses: (a)=a=−284142​−7​​−28282​−14​​+22​i22​−1​​
Cancel 284142​−7​​:7142​−7​​
284142​−7​​
Cancel the common factor: 4=7142​−7​​
=−7142​−7​​−28282​−14​​+22​i22​−1​​
Group the real part and the imaginary part of the complex number=(−7142​−7​​−28282​−14​​)+22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=(−7142​−7​​−28282​−14​​)+42​22​−1​​i
−7142​−7​​−28282​−14​​=28−4142​−7​−282​−14​​
−7142​−7​​−28282​−14​​
Least Common Multiplier of 7,28:28
7,28
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 28:2⋅2⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 28=7⋅2⋅2
Multiply the numbers: 7⋅2⋅2=28=28
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 28
For 7142​−7​​:multiply the denominator and numerator by 47142​−7​​=7⋅4142​−7​⋅4​=28142​−7​⋅4​
=−28142​−7​⋅4​−28282​−14​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=28−142​−7​⋅4−282​−14​​
=28−4142​−7​−282​−14​​+42​22​−1​​i
=28−4142​−7​−282​−14​​+42​22​−1​​i
NoSolution
sin(x)=22​22​−1​7​​−22​22​−1​​i:No Solution
sin(x)=22​22​−1​7​​−22​22​−1​​i
Simplify 22​22​−1​7​​−22​22​−1​​i:28−14+282​​+4−7+142​​​−i42​−1+22​​​
22​22​−1​7​​−22​22​−1​​i
22​22​−1​7​​=28(47​+14​)22​−1​​
22​22​−1​7​​
Multiply by the conjugate 2​2​​=22​22​−1​2​7​2​​
7​2​=14​
7​2​
Apply radical rule: a​b​=a⋅b​7​2​=7⋅2​=7⋅2​
Multiply the numbers: 7⋅2=14=14​
22​22​−1​2​=422​−1​
22​22​−1​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=22​−1​⋅21+21​+21​
21+21​+21​=22
21+21​+21​
Combine the fractions 21​+21​:1
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=21+1
Add the numbers: 1+1=2=22
=2222​−1​
22=4=422​−1​
=422​−1​14​​
Multiply by the conjugate 22​−1​22​−1​​=422​−1​22​−1​14​22​−1​​
422​−1​22​−1​=82​−4
422​−1​22​−1​
Apply radical rule: a​a​=a22​−1​22​−1​=22​−1=4(22​−1)
Apply the distributive law: a(b−c)=ab−aca=4,b=22​,c=1=4⋅22​−4⋅1
Simplify 4⋅22​−4⋅1:82​−4
4⋅22​−4⋅1
Multiply the numbers: 4⋅2=8=82​−4⋅1
Multiply the numbers: 4⋅1=4=82​−4
=82​−4
=82​−414​22​−1​​
Multiply by the conjugate 82​+482​+4​=(82​−4)(82​+4)14​22​−1​(82​+4)​
14​22​−1​(82​+4)=167​22​−1​+414​22​−1​
14​22​−1​(82​+4)
=14​(82​+4)22​−1​
Apply the distributive law: a(b+c)=ab+aca=14​22​−1​,b=82​,c=4=14​22​−1​⋅82​+14​22​−1​⋅4
=814​2​22​−1​+414​22​−1​
814​2​22​−1​=167​22​−1​
814​2​22​−1​
Factor integer 8=23=2314​2​22​−1​
Factor integer 14=2⋅7=232⋅7​2​22​−1​
Apply radical rule: nab​=na​nb​2⋅7​=2​7​=232​7​2​22​−1​
Apply radical rule: a​a​=a2​2​=2=23⋅27​22​−1​
Apply exponent rule: ab⋅ac=ab+c23⋅2=23+1=7​⋅23+122​−1​
Add the numbers: 3+1=4=7​⋅2422​−1​
24=16=167​22​−1​
=167​22​−1​+414​22​−1​
(82​−4)(82​+4)=112
(82​−4)(82​+4)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=82​,b=4=(82​)2−42
Simplify (82​)2−42:112
(82​)2−42
(82​)2=128
(82​)2
Apply exponent rule: (a⋅b)n=anbn=82(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=82⋅2
82=64=64⋅2
Multiply the numbers: 64⋅2=128=128
42=16
42
42=16=16
=128−16
Subtract the numbers: 128−16=112=112
=112
=112167​22​−1​+414​22​−1​​
Factor 167​22​−1​+414​22​−1​:4−1+22​​(47​+14​)
167​22​−1​+414​22​−1​
Rewrite as=4⋅4−1+22​​7​+4−1+22​​14​
Factor out common term 4−1+22​​=4−1+22​​(47​+14​)
=1124−1+22​​(47​+14​)​
Cancel the common factor: 4=28(47​+14​)22​−1​​
22​22​−1​​i=i42​22​−1​​
22​22​−1​​i
22​22​−1​​=42​22​−1​​
22​22​−1​​
Multiply by the conjugate 2​2​​=22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​22​−1​​
=i42​22​−1​​
=28(47​+14​)22​−1​​−i42​22​−1​​
Rewrite 28(47​+14​)22​−1​​−42​22​−1​​i in standard complex form: 284142​−7​+282​−14​​−42​22​−1​​i
28(47​+14​)22​−1​​−42​22​−1​​i
28(47​+14​)22​−1​​=284142​−7​+282​−14​​
28(47​+14​)22​−1​​
Expand (47​+14​)22​−1​:4142​−7​+282​−14​
(47​+14​)22​−1​
Apply the distributive law: a(b+c)=ab+aca=22​−1​,b=47​,c=14​=22​−1​⋅47​+22​−1​14​
=47​22​−1​+14​22​−1​
Simplify 47​22​−1​+14​22​−1​:4142​−7​+282​−14​
47​22​−1​+14​22​−1​
47​22​−1​=4142​−7​
47​22​−1​
Apply radical rule: a​b​=a⋅b​7​22​−1​=7(22​−1)​=47(22​−1)​
Expand 7(22​−1):142​−7
7(22​−1)
Apply the distributive law: a(b−c)=ab−aca=7,b=22​,c=1=7⋅22​−7⋅1
Simplify 7⋅22​−7⋅1:142​−7
7⋅22​−7⋅1
Multiply the numbers: 7⋅2=14=142​−7⋅1
Multiply the numbers: 7⋅1=7=142​−7
=142​−7
=4142​−7​
14​22​−1​=282​−14​
14​22​−1​
Apply radical rule: a​b​=a⋅b​14​22​−1​=14(22​−1)​=14(22​−1)​
Expand 14(22​−1):282​−14
14(22​−1)
Apply the distributive law: a(b−c)=ab−aca=14,b=22​,c=1=14⋅22​−14⋅1
Simplify 14⋅22​−14⋅1:282​−14
14⋅22​−14⋅1
Multiply the numbers: 14⋅2=28=282​−14⋅1
Multiply the numbers: 14⋅1=14=282​−14
=282​−14
=282​−14​
=4142​−7​+282​−14​
=4142​−7​+282​−14​
=284142​−7​+282​−14​​
42​22​−1​​i=22​i22​−1​​
42​22​−1​​i
42​22​−1​​=22​22​−1​​
42​22​−1​​
Factor 4:22
Factor 4=22
=222​22​−1​​
Cancel 222​22​−1​​:223​22​−1​​
222​22​−1​​
Apply radical rule: na​=an1​2​=221​=22221​22​−1​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​22​−1​​
Subtract the numbers: 2−21​=23​=223​22​−1​​
=223​22​−1​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​22​−1​​
=i22​22​−1​​
Multiply fractions: a⋅cb​=ca⋅b​=22​22​−1​i​
=284142​−7​+282​−14​​−22​i22​−1​​
Apply the fraction rule: ca±b​=ca​±cb​284142​−7​+282​−14​​=284142​−7​​+28282​−14​​=284142​−7​​+28282​−14​​−22​i22​−1​​
Cancel 284142​−7​​:7142​−7​​
284142​−7​​
Cancel the common factor: 4=7142​−7​​
=7142​−7​​+28282​−14​​−22​i22​−1​​
Group the real part and the imaginary part of the complex number=(7142​−7​​+28282​−14​​)−22​22​−1​​i
−22​22​−1​​=−42​22​−1​​
−22​22​−1​​
Multiply by the conjugate 2​2​​=−22​2​22​−1​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​22​−1​​
=(7142​−7​​+28282​−14​​)−42​22​−1​​i
7142​−7​​+28282​−14​​=284142​−7​+282​−14​​
7142​−7​​+28282​−14​​
Least Common Multiplier of 7,28:28
7,28
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 28:2⋅2⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 28=7⋅2⋅2
Multiply the numbers: 7⋅2⋅2=28=28
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 28
For 7142​−7​​:multiply the denominator and numerator by 47142​−7​​=7⋅4142​−7​⋅4​=28142​−7​⋅4​
=28142​−7​⋅4​+28282​−14​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=28142​−7​⋅4+282​−14​​
=284142​−7​+282​−14​​−42​22​−1​​i
=284142​−7​+282​−14​​−42​22​−1​​i
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)cos(2x)+cos(x)sin(2x)= 1/(sqrt(2))sin((5pi)/6-2x)=cos(x-pi/6),sin((2pi)/3-x)0.08=0.1cos(4x-1.57)cos(2t)-sin(t)=0.5,0<t<2pi25sin(2x)-50cos(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec^4(x)=sec^2(x)tan^2(x)-2tan^4(x) ?

    The general solution for sec^4(x)=sec^2(x)tan^2(x)-2tan^4(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024