Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2t)-sin(t)=0.5,0<t<2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2t)−sin(t)=0.5,0<t<2π

Solution

t=π+0.94247…,t=−0.94247…+2π,t=0.31415…,t=π−0.31415…
+1
Degrees
t=234∘,t=306∘,t=18∘,t=162∘
Solution steps
cos(2t)−sin(t)=0.5,0<t<2π
Subtract 0.5 from both sidescos(2t)−sin(t)−0.5=0
Rewrite using trig identities
−0.5+cos(2t)−sin(t)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−0.5+1−2sin2(t)−sin(t)
Simplify=−2sin2(t)−sin(t)+0.5
0.5−sin(t)−2sin2(t)=0
Solve by substitution
0.5−sin(t)−2sin2(t)=0
Let: sin(t)=u0.5−u−2u2=0
0.5−u−2u2=0:u=−41+5​​,u=45​−1​
0.5−u−2u2=0
Multiply both sides by 10
0.5−u−2u2=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 100.5⋅10−u⋅10−2u2⋅10=0⋅10
Refine5−10u−20u2=0
5−10u−20u2=0
Write in the standard form ax2+bx+c=0−20u2−10u+5=0
Solve with the quadratic formula
−20u2−10u+5=0
Quadratic Equation Formula:
For a=−20,b=−10,c=5u1,2​=2(−20)−(−10)±(−10)2−4(−20)⋅5​​
u1,2​=2(−20)−(−10)±(−10)2−4(−20)⋅5​​
(−10)2−4(−20)⋅5​=105​
(−10)2−4(−20)⋅5​
Apply rule −(−a)=a=(−10)2+4⋅20⋅5​
Apply exponent rule: (−a)n=an,if n is even(−10)2=102=102+4⋅20⋅5​
Multiply the numbers: 4⋅20⋅5=400=102+400​
102=100=100+400​
Add the numbers: 100+400=500=500​
Prime factorization of 500:22⋅53
500
500divides by 2500=250⋅2=2⋅250
250divides by 2250=125⋅2=2⋅2⋅125
125divides by 5125=25⋅5=2⋅2⋅5⋅25
25divides by 525=5⋅5=2⋅2⋅5⋅5⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5⋅5⋅5
=22⋅53
=53⋅22​
Apply exponent rule: ab+c=ab⋅ac=22⋅52⋅5​
Apply radical rule: nab​=na​nb​=5​22​52​
Apply radical rule: nan​=a22​=2=25​52​
Apply radical rule: nan​=a52​=5=2⋅55​
Refine=105​
u1,2​=2(−20)−(−10)±105​​
Separate the solutionsu1​=2(−20)−(−10)+105​​,u2​=2(−20)−(−10)−105​​
u=2(−20)−(−10)+105​​:−41+5​​
2(−20)−(−10)+105​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2010+105​​
Multiply the numbers: 2⋅20=40=−4010+105​​
Apply the fraction rule: −ba​=−ba​=−4010+105​​
Cancel 4010+105​​:41+5​​
4010+105​​
Factor 10+105​:10(1+5​)
10+105​
Rewrite as=10⋅1+105​
Factor out common term 10=10(1+5​)
=4010(1+5​)​
Cancel the common factor: 10=41+5​​
=−41+5​​
u=2(−20)−(−10)−105​​:45​−1​
2(−20)−(−10)−105​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2010−105​​
Multiply the numbers: 2⋅20=40=−4010−105​​
Apply the fraction rule: −b−a​=ba​10−105​=−(105​−10)=40105​−10​
Factor 105​−10:10(5​−1)
105​−10
Rewrite as=105​−10⋅1
Factor out common term 10=10(5​−1)
=4010(5​−1)​
Cancel the common factor: 10=45​−1​
The solutions to the quadratic equation are:u=−41+5​​,u=45​−1​
Substitute back u=sin(t)sin(t)=−41+5​​,sin(t)=45​−1​
sin(t)=−41+5​​,sin(t)=45​−1​
sin(t)=−41+5​​,0<t<2π:t=π+arcsin(41+5​​),t=−arcsin(41+5​​)+2π
sin(t)=−41+5​​,0<t<2π
Apply trig inverse properties
sin(t)=−41+5​​
General solutions for sin(t)=−41+5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnt=arcsin(−41+5​​)+2πn,t=π+arcsin(41+5​​)+2πn
t=arcsin(−41+5​​)+2πn,t=π+arcsin(41+5​​)+2πn
Solutions for the range 0<t<2πt=π+arcsin(41+5​​),t=−arcsin(41+5​​)+2π
sin(t)=45​−1​,0<t<2π:t=arcsin(45​−1​),t=π−arcsin(45​−1​)
sin(t)=45​−1​,0<t<2π
Apply trig inverse properties
sin(t)=45​−1​
General solutions for sin(t)=45​−1​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnt=arcsin(45​−1​)+2πn,t=π−arcsin(45​−1​)+2πn
t=arcsin(45​−1​)+2πn,t=π−arcsin(45​−1​)+2πn
Solutions for the range 0<t<2πt=arcsin(45​−1​),t=π−arcsin(45​−1​)
Combine all the solutionst=π+arcsin(41+5​​),t=−arcsin(41+5​​)+2π,t=arcsin(45​−1​),t=π−arcsin(45​−1​)
Show solutions in decimal formt=π+0.94247…,t=−0.94247…+2π,t=0.31415…,t=π−0.31415…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

25sin(2x)-50cos(x)=05sin(2x)=3cos(2x)4cos(3x-20)=10=1.9cos(0.1t)-1.25sin(0.2t)sin(x/4)=(sqrt(3))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024