Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((5pi)/6-2x)=cos(x-pi/6),sin((2pi)/3-x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(65π​−2x)=cos(x−6π​),sin(32π​−x)

Solution

NoSolutionforx∈R
Solution steps
sin(65π​−2x)=cos(x−6π​),sin(32π​−x)
Rewrite using trig identities
sin(65π​−2x)=cos(x−6π​)
Use the following identity: cos(x)=sin(2π​−x)sin(65π​−2x)=sin(2π​−(x−6π​))
sin(65π​−2x)=sin(2π​−(x−6π​))
Apply trig inverse properties
sin(65π​−2x)=sin(2π​−(x−6π​))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn65π​−2x=2π​−(x−6π​)+2πn,65π​−2x=π−(2π​−(x−6π​))+2πn
65π​−2x=2π​−(x−6π​)+2πn,65π​−2x=π−(2π​−(x−6π​))+2πn
65π​−2x=2π​−(x−6π​)+2πn:x=−612πn−π​
65π​−2x=2π​−(x−6π​)+2πn
Expand 2π​−(x−6π​)+2πn:−x+2πn+32π​
2π​−(x−6π​)+2πn
−(x−6π​):−x+6π​
−(x−6π​)
Distribute parentheses=−(x)−(−6π​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−x+6π​
=2π​−x+6π​+2πn
Simplify 2π​−x+6π​+2πn:−x+2πn+32π​
2π​−x+6π​+2πn
Group like terms=−x+2πn+2π​+6π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
=6π3​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π3+π​
Add similar elements: 3π+π=4π=64π​
Cancel the common factor: 2=−x+2πn+32π​
=−x+2πn+32π​
65π​−2x=−x+2πn+32π​
Move 65π​to the right side
65π​−2x=−x+2πn+32π​
Subtract 65π​ from both sides65π​−2x−65π​=−x+2πn+32π​−65π​
Simplify
65π​−2x−65π​=−x+2πn+32π​−65π​
Simplify 65π​−2x−65π​:−2x
65π​−2x−65π​
Add similar elements: 65π​−65π​=0
=−2x
Simplify −x+2πn+32π​−65π​:−x+2πn−6π​
−x+2πn+32π​−65π​
Least Common Multiplier of 3,6:6
3,6
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 6=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 32π​:multiply the denominator and numerator by 232π​=3⋅22π2​=64π​
=64π​−65π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=64π−5π​
Add similar elements: 4π−5π=−π=6−π​
Apply the fraction rule: b−a​=−ba​=−x+2πn−6π​
−2x=−x+2πn−6π​
−2x=−x+2πn−6π​
−2x=−x+2πn−6π​
Move xto the left side
−2x=−x+2πn−6π​
Add x to both sides−2x+x=−x+2πn−6π​+x
Simplify−x=2πn−6π​
−x=2πn−6π​
Divide both sides by −1
−x=2πn−6π​
Divide both sides by −1−1−x​=−12πn​−−16π​​
Simplify
−1−x​=−12πn​−−16π​​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −12πn​−−16π​​:−612πn−π​
−12πn​−−16π​​
Apply rule ca​±cb​=ca±b​=−12πn−6π​​
Apply the fraction rule: −ba​=−ba​=−12πn−6π​​
Join 2πn−6π​:612πn−π​
2πn−6π​
Convert element to fraction: 2πn=62πn6​=62πn⋅6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62πn⋅6−π​
Multiply the numbers: 2⋅6=12=612πn−π​
=−1612πn−π​​
Apply the fraction rule: 1a​=a=−612πn−π​
x=−612πn−π​
x=−612πn−π​
x=−612πn−π​
65π​−2x=π−(2π​−(x−6π​))+2πn:x=−6−π+4πn​
65π​−2x=π−(2π​−(x−6π​))+2πn
Expand π−(2π​−(x−6π​))+2πn:π+x−32π​+2πn
π−(2π​−(x−6π​))+2πn
Expand 2π​−(x−6π​):−x+32π​
2π​−(x−6π​)
−(x−6π​):−x+6π​
−(x−6π​)
Distribute parentheses=−(x)−(−6π​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−x+6π​
=2π​−x+6π​
Simplify 2π​−x+6π​:−x+32π​
2π​−x+6π​
Group like terms=−x+2π​+6π​
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
=6π3​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π3+π​
Add similar elements: 3π+π=4π=64π​
Cancel the common factor: 2=−x+32π​
=−x+32π​
=π−(−x+32π​)+2πn
−(−x+32π​):x−32π​
−(−x+32π​)
Distribute parentheses=−(−x)−(32π​)
Apply minus-plus rules−(−a)=a,−(a)=−a=x−32π​
=π+x−32π​+2πn
65π​−2x=π+x−32π​+2πn
Move 65π​to the right side
65π​−2x=π+x−32π​+2πn
Subtract 65π​ from both sides65π​−2x−65π​=π+x−32π​+2πn−65π​
Simplify
65π​−2x−65π​=π+x−32π​+2πn−65π​
Simplify 65π​−2x−65π​:−2x
65π​−2x−65π​
Add similar elements: 65π​−65π​=0
=−2x
Simplify π+x−32π​+2πn−65π​:x+π+2πn−23π​
π+x−32π​+2πn−65π​
Group like terms=x+π+2πn−32π​−65π​
Least Common Multiplier of 3,6:6
3,6
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 6=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 32π​:multiply the denominator and numerator by 232π​=3⋅22π2​=64π​
=−64π​−65π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−4π−5π​
Add similar elements: −4π−5π=−9π=6−9π​
Apply the fraction rule: b−a​=−ba​=−69π​
Cancel the common factor: 3=x+π+2πn−23π​
−2x=x+π+2πn−23π​
−2x=x+π+2πn−23π​
−2x=x+π+2πn−23π​
Move xto the left side
−2x=x+π+2πn−23π​
Subtract x from both sides−2x−x=x+π+2πn−23π​−x
Simplify−3x=π+2πn−23π​
−3x=π+2πn−23π​
Divide both sides by −3
−3x=π+2πn−23π​
Divide both sides by −3−3−3x​=−3π​+−32πn​−−323π​​
Simplify
−3−3x​=−3π​+−32πn​−−323π​​
Simplify −3−3x​:x
−3−3x​
Apply the fraction rule: −b−a​=ba​=33x​
Divide the numbers: 33​=1=x
Simplify −3π​+−32πn​−−323π​​:−6−π+4πn​
−3π​+−32πn​−−323π​​
Apply rule ca​±cb​=ca±b​=−3π+2πn−23π​​
Apply the fraction rule: −ba​=−ba​=−3π+2πn−23π​​
Join π+2πn−23π​:2−π+4πn​
π+2πn−23π​
Convert element to fraction: π=2π2​,2πn=22πn2​=2π2​+22πn⋅2​−23π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π2+2πn⋅2−3π​
π2+2πn⋅2−3π=−π+4πn
π2+2πn⋅2−3π
Add similar elements: 2π−3π=−π=−π+2⋅2πn
Multiply the numbers: 2⋅2=4=−π+4πn
=2−π+4πn​
=−324πn−π​​
Simplify 32−π+4πn​​:6−π+4πn​
32−π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3−π+4πn​
Multiply the numbers: 2⋅3=6=6−π+4πn​
=−64πn−π​
=−6−π+4πn​
x=−6−π+4πn​
x=−6−π+4πn​
x=−6−π+4πn​
Solutions for the range sin(32π​−x)NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

0.08=0.1cos(4x-1.57)cos(2t)-sin(t)=0.5,0<t<2pi25sin(2x)-50cos(x)=05sin(2x)=3cos(2x)4cos(3x-20)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024