Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3+4cot(x)=5csc(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3+4cot(x)=5csc(x)

Solution

x=0.64350…+2πn
+1
Degrees
x=36.86989…∘+360∘n
Solution steps
3+4cot(x)=5csc(x)
Subtract 5csc(x) from both sides3+4cot(x)−5csc(x)=0
Express with sin, cos3+4⋅sin(x)cos(x)​−5⋅sin(x)1​=0
Simplify 3+4⋅sin(x)cos(x)​−5⋅sin(x)1​:sin(x)3sin(x)+4cos(x)−5​
3+4⋅sin(x)cos(x)​−5⋅sin(x)1​
4⋅sin(x)cos(x)​=sin(x)4cos(x)​
4⋅sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)⋅4​
5⋅sin(x)1​=sin(x)5​
5⋅sin(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1⋅5​
Multiply the numbers: 1⋅5=5=sin(x)5​
=3+sin(x)4cos(x)​−sin(x)5​
Combine the fractions sin(x)4cos(x)​−sin(x)5​:sin(x)4cos(x)−5​
Apply rule ca​±cb​=ca±b​=sin(x)4cos(x)−5​
=3+sin(x)4cos(x)−5​
Convert element to fraction: 3=sin(x)3sin(x)​=sin(x)3sin(x)​+sin(x)cos(x)⋅4−5​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)3sin(x)+cos(x)⋅4−5​
sin(x)3sin(x)+4cos(x)−5​=0
g(x)f(x)​=0⇒f(x)=03sin(x)+4cos(x)−5=0
Subtract 4cos(x) from both sides3sin(x)−5=−4cos(x)
Square both sides(3sin(x)−5)2=(−4cos(x))2
Subtract (−4cos(x))2 from both sides(3sin(x)−5)2−16cos2(x)=0
Rewrite using trig identities
(−5+3sin(x))2−16cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−5+3sin(x))2−16(1−sin2(x))
Simplify (−5+3sin(x))2−16(1−sin2(x)):25sin2(x)−30sin(x)+9
(−5+3sin(x))2−16(1−sin2(x))
(−5+3sin(x))2:25−30sin(x)+9sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−5,b=3sin(x)
=(−5)2+2(−5)⋅3sin(x)+(3sin(x))2
Simplify (−5)2+2(−5)⋅3sin(x)+(3sin(x))2:25−30sin(x)+9sin2(x)
(−5)2+2(−5)⋅3sin(x)+(3sin(x))2
Remove parentheses: (−a)=−a=(−5)2−2⋅5⋅3sin(x)+(3sin(x))2
(−5)2=25
(−5)2
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52
52=25=25
2⋅5⋅3sin(x)=30sin(x)
2⋅5⋅3sin(x)
Multiply the numbers: 2⋅5⋅3=30=30sin(x)
(3sin(x))2=9sin2(x)
(3sin(x))2
Apply exponent rule: (a⋅b)n=anbn=32sin2(x)
32=9=9sin2(x)
=25−30sin(x)+9sin2(x)
=25−30sin(x)+9sin2(x)
=25−30sin(x)+9sin2(x)−16(1−sin2(x))
Expand −16(1−sin2(x)):−16+16sin2(x)
−16(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−16,b=1,c=sin2(x)=−16⋅1−(−16)sin2(x)
Apply minus-plus rules−(−a)=a=−16⋅1+16sin2(x)
Multiply the numbers: 16⋅1=16=−16+16sin2(x)
=25−30sin(x)+9sin2(x)−16+16sin2(x)
Simplify 25−30sin(x)+9sin2(x)−16+16sin2(x):25sin2(x)−30sin(x)+9
25−30sin(x)+9sin2(x)−16+16sin2(x)
Group like terms=−30sin(x)+9sin2(x)+16sin2(x)+25−16
Add similar elements: 9sin2(x)+16sin2(x)=25sin2(x)=−30sin(x)+25sin2(x)+25−16
Add/Subtract the numbers: 25−16=9=25sin2(x)−30sin(x)+9
=25sin2(x)−30sin(x)+9
=25sin2(x)−30sin(x)+9
9+25sin2(x)−30sin(x)=0
Solve by substitution
9+25sin2(x)−30sin(x)=0
Let: sin(x)=u9+25u2−30u=0
9+25u2−30u=0:u=53​
9+25u2−30u=0
Write in the standard form ax2+bx+c=025u2−30u+9=0
Solve with the quadratic formula
25u2−30u+9=0
Quadratic Equation Formula:
For a=25,b=−30,c=9u1,2​=2⋅25−(−30)±(−30)2−4⋅25⋅9​​
u1,2​=2⋅25−(−30)±(−30)2−4⋅25⋅9​​
(−30)2−4⋅25⋅9=0
(−30)2−4⋅25⋅9
Apply exponent rule: (−a)n=an,if n is even(−30)2=302=302−4⋅25⋅9
Multiply the numbers: 4⋅25⋅9=900=302−900
302=900=900−900
Subtract the numbers: 900−900=0=0
u1,2​=2⋅25−(−30)±0​​
u=2⋅25−(−30)​
2⋅25−(−30)​=53​
2⋅25−(−30)​
Apply rule −(−a)=a=2⋅2530​
Multiply the numbers: 2⋅25=50=5030​
Cancel the common factor: 10=53​
u=53​
The solution to the quadratic equation is:u=53​
Substitute back u=sin(x)sin(x)=53​
sin(x)=53​
sin(x)=53​:x=arcsin(53​)+2πn,x=π−arcsin(53​)+2πn
sin(x)=53​
Apply trig inverse properties
sin(x)=53​
General solutions for sin(x)=53​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(53​)+2πn,x=π−arcsin(53​)+2πn
x=arcsin(53​)+2πn,x=π−arcsin(53​)+2πn
Combine all the solutionsx=arcsin(53​)+2πn,x=π−arcsin(53​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 3+4cot(x)=5csc(x)
Remove the ones that don't agree with the equation.
Check the solution arcsin(53​)+2πn:True
arcsin(53​)+2πn
Plug in n=1arcsin(53​)+2π1
For 3+4cot(x)=5csc(x)plug inx=arcsin(53​)+2π13+4cot(arcsin(53​)+2π1)=5csc(arcsin(53​)+2π1)
Refine8.33333…=8.33333…
⇒True
Check the solution π−arcsin(53​)+2πn:False
π−arcsin(53​)+2πn
Plug in n=1π−arcsin(53​)+2π1
For 3+4cot(x)=5csc(x)plug inx=π−arcsin(53​)+2π13+4cot(π−arcsin(53​)+2π1)=5csc(π−arcsin(53​)+2π1)
Refine−2.33333…=8.33333…
⇒False
x=arcsin(53​)+2πn
Show solutions in decimal formx=0.64350…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(tan(x)-1)(sec(x)+1)=0tan(θ)= 9/10tan(x)= 3/(sqrt(205))sin(x)sin(2x)=sin(3x)cot(x)= 15/8

Frequently Asked Questions (FAQ)

  • What is the general solution for 3+4cot(x)=5csc(x) ?

    The general solution for 3+4cot(x)=5csc(x) is x=0.64350…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024