Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)sin(2x)=sin(3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)sin(2x)=sin(3x)

Solution

x=2πn,x=π+2πn,x=4π​+πn,x=−1.24904…+πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=45∘+180∘n,x=−71.56505…∘+180∘n
Solution steps
sin(x)sin(2x)=sin(3x)
Subtract sin(3x) from both sidessin(x)sin(2x)−sin(3x)=0
Rewrite using trig identities
−sin(3x)+sin(2x)sin(x)
sin(3x)=−sin3(x)+3cos2(x)sin(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=(cos2(x)−sin2(x))sin(x)+2cos(x)cos(x)sin(x)
=(cos2(x)−sin2(x))sin(x)+2cos(x)cos(x)sin(x)
Expand (cos2(x)−sin2(x))sin(x)+2cos(x)cos(x)sin(x):−sin3(x)+3cos2(x)sin(x)
(cos2(x)−sin2(x))sin(x)+2cos(x)cos(x)sin(x)
2cos(x)cos(x)sin(x)=2cos2(x)sin(x)
2cos(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2cos1+1(x)sin(x)
Add the numbers: 1+1=2=2cos2(x)sin(x)
=sin(x)(cos2(x)−sin2(x))+2cos2(x)sin(x)
=sin(x)(cos2(x)−sin2(x))+2cos2(x)sin(x)
Expand sin(x)(cos2(x)−sin2(x)):cos2(x)sin(x)−sin3(x)
sin(x)(cos2(x)−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=cos2(x),c=sin2(x)=sin(x)cos2(x)−sin(x)sin2(x)
=cos2(x)sin(x)−sin2(x)sin(x)
sin2(x)sin(x)=sin3(x)
sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=sin2+1(x)
Add the numbers: 2+1=3=sin3(x)
=cos2(x)sin(x)−sin3(x)
=cos2(x)sin(x)−sin3(x)+2cos2(x)sin(x)
Simplify cos2(x)sin(x)−sin3(x)+2cos2(x)sin(x):−sin3(x)+3cos2(x)sin(x)
cos2(x)sin(x)−sin3(x)+2cos2(x)sin(x)
Group like terms=−sin3(x)+cos2(x)sin(x)+2cos2(x)sin(x)
Add similar elements: cos2(x)sin(x)+2cos2(x)sin(x)=3cos2(x)sin(x)=−sin3(x)+3cos2(x)sin(x)
=−sin3(x)+3cos2(x)sin(x)
=−sin3(x)+3cos2(x)sin(x)
=−(−sin3(x)+3cos2(x)sin(x))+sin(2x)sin(x)
−(−sin3(x)+3cos2(x)sin(x)):sin3(x)−3cos2(x)sin(x)
−(−sin3(x)+3cos2(x)sin(x))
Distribute parentheses=−(−sin3(x))−(3cos2(x)sin(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=sin3(x)−3cos2(x)sin(x)
=sin3(x)−3cos2(x)sin(x)+sin(2x)sin(x)
sin3(x)+sin(2x)sin(x)−3cos2(x)sin(x)=0
Factor sin3(x)+sin(2x)sin(x)−3cos2(x)sin(x):sin(x)(sin2(x)+sin(2x)−3cos2(x))
sin3(x)+sin(2x)sin(x)−3cos2(x)sin(x)
Apply exponent rule: ab+c=abacsin3(x)=sin(x)sin2(x)=sin(x)sin2(x)+sin(2x)sin(x)−3cos2(x)sin(x)
Factor out common term sin(x)=sin(x)(sin2(x)+sin(2x)−3cos2(x))
sin(x)(sin2(x)+sin(2x)−3cos2(x))=0
Solving each part separatelysin(x)=0orsin2(x)+sin(2x)−3cos2(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin2(x)+sin(2x)−3cos2(x)=0:x=4π​+πn,x=arctan(−3)+πn
sin2(x)+sin(2x)−3cos2(x)=0
Rewrite using trig identities
sin(2x)+sin2(x)−3cos2(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(x)cos(x)+sin2(x)−3cos2(x)
sin2(x)−3cos2(x)+2cos(x)sin(x)=0
Factor sin2(x)−3cos2(x)+2cos(x)sin(x):(sin(x)−cos(x))(sin(x)+3cos(x))
sin2(x)−3cos2(x)+2cos(x)sin(x)
Break the expression into groups
sin2(x)+2sin(x)cos(x)−3cos2(x)
Definition
Factors of 3:1,3
3
Divisors (Factors)
Find the Prime factors of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Add 1 1
The factors of 31,3
Negative factors of 3:−1,−3
Multiply the factors by −1 to get the negative factors−1,−3
For every two factors such that u∗v=−3,check if u+v=2
Check u=1,v=−3:u∗v=−3,u+v=−2⇒FalseCheck u=3,v=−1:u∗v=−3,u+v=2⇒True
u=3,v=−1
Group into (ax2+uxy)+(vxy+cy2)(sin2(x)−sin(x)cos(x))+(3sin(x)cos(x)−3cos2(x))
=(sin2(x)−sin(x)cos(x))+(3sin(x)cos(x)−3cos2(x))
Factor out sin(x)from sin2(x)−sin(x)cos(x):sin(x)(sin(x)−cos(x))
sin2(x)−sin(x)cos(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=sin(x)sin(x)−sin(x)cos(x)
Factor out common term sin(x)=sin(x)(sin(x)−cos(x))
Factor out 3cos(x)from 3sin(x)cos(x)−3cos2(x):3cos(x)(sin(x)−cos(x))
3sin(x)cos(x)−3cos2(x)
Apply exponent rule: ab+c=abaccos2(x)=cos(x)cos(x)=3sin(x)cos(x)−3cos(x)cos(x)
Factor out common term 3cos(x)=3cos(x)(sin(x)−cos(x))
=sin(x)(sin(x)−cos(x))+3cos(x)(sin(x)−cos(x))
Factor out common term sin(x)−cos(x)=(sin(x)−cos(x))(sin(x)+3cos(x))
(sin(x)−cos(x))(sin(x)+3cos(x))=0
Solving each part separatelysin(x)−cos(x)=0orsin(x)+3cos(x)=0
sin(x)−cos(x)=0:x=4π​+πn
sin(x)−cos(x)=0
Rewrite using trig identities
sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−1=0
tan(x)−1=0
Move 1to the right side
tan(x)−1=0
Add 1 to both sidestan(x)−1+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
sin(x)+3cos(x)=0:x=arctan(−3)+πn
sin(x)+3cos(x)=0
Rewrite using trig identities
sin(x)+3cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+3cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+3=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+3=0
tan(x)+3=0
Move 3to the right side
tan(x)+3=0
Subtract 3 from both sidestan(x)+3−3=0−3
Simplifytan(x)=−3
tan(x)=−3
Apply trig inverse properties
tan(x)=−3
General solutions for tan(x)=−3tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−3)+πn
x=arctan(−3)+πn
Combine all the solutionsx=4π​+πn,x=arctan(−3)+πn
Combine all the solutionsx=2πn,x=π+2πn,x=4π​+πn,x=arctan(−3)+πn
Show solutions in decimal formx=2πn,x=π+2πn,x=4π​+πn,x=−1.24904…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x)= 15/8cos(θ)=(-5)/4solvefor x,y=5cos(8x)-ycsc(θ)= 3/2 , pi/2 <θ<(3pi)/2tan(x)=(5.1)/(4.2)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)sin(2x)=sin(3x) ?

    The general solution for sin(x)sin(2x)=sin(3x) is x=2pin,x=pi+2pin,x= pi/4+pin,x=-1.24904…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024