Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x+2)-arctan(x+1)= pi/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x+2)−arctan(x+1)=4π​

Solution

x=−1,x=−2
Solution steps
arctan(x+2)−arctan(x+1)=4π​
Rewrite using trig identities
arctan(x+2)−arctan(x+1)
Use the Sum to Product identity: arctan(s)−arctan(t)=arctan(1+sts−t​)=arctan(1+(x+2)(x+1)x+2−(x+1)​)
arctan(1+(x+2)(x+1)x+2−(x+1)​)=4π​
Apply trig inverse properties
arctan(1+(x+2)(x+1)x+2−(x+1)​)=4π​
arctan(x)=a⇒x=tan(a)1+(x+2)(x+1)x+2−(x+1)​=tan(4π​)
tan(4π​)=1
tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1
1+(x+2)(x+1)x+2−(x+1)​=1
1+(x+2)(x+1)x+2−(x+1)​=1
Solve 1+(x+2)(x+1)x+2−(x+1)​=1:x=−1,x=−2
1+(x+2)(x+1)x+2−(x+1)​=1
Simplify 1+(x+2)(x+1)x+2−(x+1)​:x2+3x+31​
1+(x+2)(x+1)x+2−(x+1)​
Expand 1+(x+2)(x+1):x2+3x+3
1+(x+2)(x+1)
Expand (x+2)(x+1):x2+3x+2
(x+2)(x+1)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=x,b=2,c=x,d=1=xx+x⋅1+2x+2⋅1
=xx+1⋅x+2x+2⋅1
Simplify xx+1⋅x+2x+2⋅1:x2+3x+2
xx+1⋅x+2x+2⋅1
Add similar elements: 1⋅x+2x=3x=xx+3x+2⋅1
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
2⋅1=2
2⋅1
Multiply the numbers: 2⋅1=2=2
=x2+3x+2
=x2+3x+2
=1+x2+3x+2
Simplify 1+x2+3x+2:x2+3x+3
1+x2+3x+2
Group like terms=x2+3x+1+2
Add the numbers: 1+2=3=x2+3x+3
=x2+3x+3
=x2+3x+3x+2−(x+1)​
Expand x+2−(x+1):1
x+2−(x+1)
−(x+1):−x−1
−(x+1)
Distribute parentheses=−(x)−(1)
Apply minus-plus rules+(−a)=−a=−x−1
=x+2−x−1
Simplify x+2−x−1:1
x+2−x−1
Group like terms=x−x+2−1
Add similar elements: x−x=0=2−1
Subtract the numbers: 2−1=1=1
=1
=x2+3x+31​
x2+3x+31​=1
Multiply both sides by x2+3x+3
x2+3x+31​=1
Multiply both sides by x2+3x+3x2+3x+31​(x2+3x+3)=1⋅(x2+3x+3)
Simplify
x2+3x+31​(x2+3x+3)=1⋅(x2+3x+3)
Simplify x2+3x+31​(x2+3x+3):1
x2+3x+31​(x2+3x+3)
Multiply fractions: a⋅cb​=ca⋅b​=x2+3x+31⋅(x2+3x+3)​
Cancel the common factor: x2+3x+3=1
Simplify 1⋅(x2+3x+3):x2+3x+3
1⋅(x2+3x+3)
Multiply: 1⋅(x2+3x+3)=(x2+3x+3)=(x2+3x+3)
Remove parentheses: (a)=a=x2+3x+3
1=x2+3x+3
1=x2+3x+3
1=x2+3x+3
Solve 1=x2+3x+3:x=−1,x=−2
1=x2+3x+3
Switch sidesx2+3x+3=1
Move 1to the left side
x2+3x+3=1
Subtract 1 from both sidesx2+3x+3−1=1−1
Simplifyx2+3x+2=0
x2+3x+2=0
Solve with the quadratic formula
x2+3x+2=0
Quadratic Equation Formula:
For a=1,b=3,c=2x1,2​=2⋅1−3±32−4⋅1⋅2​​
x1,2​=2⋅1−3±32−4⋅1⋅2​​
32−4⋅1⋅2​=1
32−4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=32−8​
32=9=9−8​
Subtract the numbers: 9−8=1=1​
Apply rule 1​=1=1
x1,2​=2⋅1−3±1​
Separate the solutionsx1​=2⋅1−3+1​,x2​=2⋅1−3−1​
x=2⋅1−3+1​:−1
2⋅1−3+1​
Add/Subtract the numbers: −3+1=−2=2⋅1−2​
Multiply the numbers: 2⋅1=2=2−2​
Apply the fraction rule: b−a​=−ba​=−22​
Apply rule aa​=1=−1
x=2⋅1−3−1​:−2
2⋅1−3−1​
Subtract the numbers: −3−1=−4=2⋅1−4​
Multiply the numbers: 2⋅1=2=2−4​
Apply the fraction rule: b−a​=−ba​=−24​
Divide the numbers: 24​=2=−2
The solutions to the quadratic equation are:x=−1,x=−2
x=−1,x=−2
x=−1,x=−2
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(x+2)−arctan(x+1)=4π​
Remove the ones that don't agree with the equation.
Check the solution −1:True
−1
Plug in n=1−1
For arctan(x+2)−arctan(x+1)=4π​plug inx=−1arctan(−1+2)−arctan(−1+1)=4π​
Refine0.78539…=0.78539…
⇒True
Check the solution −2:True
−2
Plug in n=1−2
For arctan(x+2)−arctan(x+1)=4π​plug inx=−2arctan(−2+2)−arctan(−2+1)=4π​
Refine0.78539…=0.78539…
⇒True
x=−1,x=−2

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(2x)=1cos^2(x)=(1+sin(x))(1-cos(x))tan(x)=1,-pi<x<= pi1/(2cos^2(x-1))=(1+tan^2(x))/(2sec^2(x))sin(2x)-2cos(2x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x+2)-arctan(x+1)= pi/4 ?

    The general solution for arctan(x+2)-arctan(x+1)= pi/4 is x=-1,x=-2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024