Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(2cos^2(x-1))=(1+tan^2(x))/(2sec^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x−1)1​=2sec2(x)1+tan2(x)​

Solution

x=π+2πn+1,x=2πn+1
+1
Degrees
x=237.29577…∘+360∘n,x=57.29577…∘+360∘n
Solution steps
2cos2(x−1)1​=2sec2(x)1+tan2(x)​
Subtract 2sec2(x)1+tan2(x)​ from both sides2cos2(x−1)1​−2sec2(x)1+tan2(x)​=0
Simplify 2cos2(x−1)1​−2sec2(x)1+tan2(x)​:2cos2(x−1)sec2(x)sec2(x)−cos2(x−1)(1+tan2(x))​
2cos2(x−1)1​−2sec2(x)1+tan2(x)​
Least Common Multiplier of 2cos2(x−1),2sec2(x):2cos2(x−1)sec2(x)
2cos2(x−1),2sec2(x)
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2cos2(x−1) or 2sec2(x)=2cos2(x−1)sec2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2cos2(x−1)sec2(x)
For 2cos2(x−1)1​:multiply the denominator and numerator by sec2(x)2cos2(x−1)1​=2cos2(x−1)sec2(x)1⋅sec2(x)​=2cos2(x−1)sec2(x)sec2(x)​
For 2sec2(x)1+tan2(x)​:multiply the denominator and numerator by cos2(x−1)2sec2(x)1+tan2(x)​=2sec2(x)cos2(x−1)(1+tan2(x))cos2(x−1)​
=2cos2(x−1)sec2(x)sec2(x)​−2sec2(x)cos2(x−1)(1+tan2(x))cos2(x−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2cos2(x−1)sec2(x)sec2(x)−(1+tan2(x))cos2(x−1)​
2cos2(x−1)sec2(x)sec2(x)−cos2(x−1)(1+tan2(x))​=0
g(x)f(x)​=0⇒f(x)=0sec2(x)−cos2(x−1)(1+tan2(x))=0
Rewrite using trig identities
sec2(x)−(1+tan2(x))cos2(−1+x)
Use the Pythagorean identity: tan2(x)+1=sec2(x)=sec2(x)−cos2(−1+x)sec2(x)
sec2(x)−cos2(−1+x)sec2(x)=0
Factor sec2(x)−cos2(−1+x)sec2(x):−sec2(x)(cos(−1+x)+1)(cos(−1+x)−1)
sec2(x)−cos2(−1+x)sec2(x)
Factor out common term −sec2(x)=−sec2(x)(−1+cos2(−1+x))
Factor cos2(−1+x)−1:(cos(−1+x)+1)(cos(−1+x)−1)
cos2(−1+x)−1
Rewrite 1 as 12=cos2(−1+x)−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(−1+x)−12=(cos(−1+x)+1)(cos(−1+x)−1)=(cos(−1+x)+1)(cos(−1+x)−1)
=−sec2(x)(cos(−1+x)+1)(cos(−1+x)−1)
−sec2(x)(cos(−1+x)+1)(cos(−1+x)−1)=0
Solving each part separatelysec2(x)=0orcos(−1+x)+1=0orcos(−1+x)−1=0
sec2(x)=0:No Solution
sec2(x)=0
Apply rule xn=0⇒x=0
sec(x)=0
sec(x)≤−1orsec(x)≥1NoSolution
cos(−1+x)+1=0:x=π+2πn+1
cos(−1+x)+1=0
Move 1to the right side
cos(−1+x)+1=0
Subtract 1 from both sidescos(−1+x)+1−1=0−1
Simplifycos(−1+x)=−1
cos(−1+x)=−1
General solutions for cos(−1+x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
−1+x=π+2πn
−1+x=π+2πn
Solve −1+x=π+2πn:x=π+2πn+1
−1+x=π+2πn
Move 1to the right side
−1+x=π+2πn
Add 1 to both sides−1+x+1=π+2πn+1
Simplifyx=π+2πn+1
x=π+2πn+1
x=π+2πn+1
cos(−1+x)−1=0:x=2πn+1
cos(−1+x)−1=0
Move 1to the right side
cos(−1+x)−1=0
Add 1 to both sidescos(−1+x)−1+1=0+1
Simplifycos(−1+x)=1
cos(−1+x)=1
General solutions for cos(−1+x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
−1+x=0+2πn
−1+x=0+2πn
Solve −1+x=0+2πn:x=2πn+1
−1+x=0+2πn
0+2πn=2πn−1+x=2πn
Move 1to the right side
−1+x=2πn
Add 1 to both sides−1+x+1=2πn+1
Simplifyx=2πn+1
x=2πn+1
x=2πn+1
Combine all the solutionsx=π+2πn+1,x=2πn+1

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x)-2cos(2x)=0tan(x)=(87.092)/(86.676)csc(x)=-3/21+3sin(θ)=0(tan(2x))/(sin(x))=-2

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/(2cos^2(x-1))=(1+tan^2(x))/(2sec^2(x)) ?

    The general solution for 1/(2cos^2(x-1))=(1+tan^2(x))/(2sec^2(x)) is x=pi+2pin+1,x=2pin+1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024