Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(-pi/5)-sec(x)=1.5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(−5π​)−sec(x)=1.5

Solution

x=1.92586…+2πn,x=−1.92586…+2πn
+1
Degrees
x=110.34419…∘+360∘n,x=−110.34419…∘+360∘n
Solution steps
cot(−5π​)−sec(x)=1.5
cot(−5π​)=−20(310​+52​)5−5​​​
cot(−5π​)
Use the following property: cot(−x)=−cot(x)cot(−5π​)=−cot(5π​)=−cot(5π​)
Rewrite using trig identities:cot(5π​)=20(310​+52​)5−5​​​
cot(5π​)
Rewrite using trig identities:sin(5π​)cos(5π​)​
cot(5π​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(5π​)cos(5π​)​
=sin(5π​)cos(5π​)​
Rewrite using trig identities:cos(5π​)=45​+1​
cos(5π​)
Show that: cos(5π​)−sin(10π​)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Show that: cos(5π​)+sin(10π​)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Refine(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Substitute cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Refine(cos(5π​)+sin(10π​))2−41​=1
Add 41​ to both sides(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Refine(cos(5π​)+sin(10π​))2=45​
Take the square root of both sidescos(5π​)+sin(10π​)=±45​​
cos(5π​)cannot be negativesin(10π​)cannot be negativecos(5π​)+sin(10π​)=45​​
Add the following equationscos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Refinecos(5π​)=45​+1​
=45​+1​
Rewrite using trig identities:sin(5π​)=42​5−5​​​
sin(5π​)
Show that: cos(5π​)−sin(10π​)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Show that: cos(5π​)+sin(10π​)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Refine(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Show that: 2cos(5π​)sin(10π​)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Divide both sides by sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Use the following identity: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Divide both sides by cos(10π​)1=4sin(10π​)cos(5π​)
Divide both sides by 221​=2sin(10π​)cos(5π​)
Substitute 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Substitute cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Refine(cos(5π​)+sin(10π​))2−41​=1
Add 41​ to both sides(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Refine(cos(5π​)+sin(10π​))2=45​
Take the square root of both sidescos(5π​)+sin(10π​)=±45​​
cos(5π​)cannot be negativesin(10π​)cannot be negativecos(5π​)+sin(10π​)=45​​
Add the following equationscos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Refinecos(5π​)=45​+1​
Square both sides(cos(5π​))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(5π​)=1−cos2(5π​)
Substitute cos(5π​)=45​+1​sin2(5π​)=1−(45​+1​)2
Refinesin2(5π​)=85−5​​
Take the square root of both sidessin(5π​)=±85−5​​​
sin(5π​)cannot be negativesin(5π​)=85−5​​​
Refinesin(5π​)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Apply the fraction rule: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalize 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multiply by the conjugate 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​45​+1​​
Simplify 42​5−5​​​45​+1​​:20(310​+52​)5−5​​​
42​5−5​​​45​+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=42​5−5​​(5​+1)⋅4​
Cancel the common factor: 4=2​5−5​​5​+1​
Rationalize 2​5−5​​5​+1​:20(310​+52​)5−5​​​
2​5−5​​5​+1​
Multiply by the conjugate 2​2​​=2​5−5​​2​(5​+1)2​​
2​5−5​​2​=25−5​​
2​5−5​​2​
Apply radical rule: a​a​=a2​2​=2=25−5​​
=25−5​​2​(5​+1)​
Multiply by the conjugate 5−5​​5−5​​​=25−5​​5−5​​2​(5​+1)5−5​​​
25−5​​5−5​​=10−25​
25−5​​5−5​​
Apply radical rule: a​a​=a5−5​​5−5​​=5−5​=2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​2​(5​+1)5−5​​​
Factor out common term −2:−2(5​−5)
−25​+10
Rewrite 10 as 2⋅5=−25​+2⋅5
Factor out common term −2=−2(5​−5)
=−2(5​−5)2​(5​+1)5−5​​​
Cancel −2(5​−5)2​(5​+1)5−5​​​:2(5−5​)2​(5​+1)5−5​​​
−2(5​−5)2​(5​+1)5−5​​​
5​−5=−(5−5​)=−−2(5−5​)2​(1+5​)5−5​​​
Refine=2(5−5​)2​(5​+1)5−5​​​
=2(5−5​)2​(5​+1)5−5​​​
Multiply by the conjugate 5+5​5+5​​=2(5−5​)(5+5​)2​(5​+1)5−5​​(5+5​)​
2​(5​+1)5−5​​(5+5​)=610​5−5​​+102​5−5​​
2​(5​+1)5−5​​(5+5​)
=2​(5​+1)(5+5​)5−5​​
Expand (5​+1)(5+5​):65​+10
(5​+1)(5+5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=5​,b=1,c=5,d=5​=5​⋅5+5​5​+1⋅5+1⋅5​
=55​+5​5​+1⋅5+1⋅5​
Simplify 55​+5​5​+1⋅5+1⋅5​:65​+10
55​+5​5​+1⋅5+1⋅5​
Add similar elements: 55​+1⋅5​=65​=65​+5​5​+1⋅5
Apply radical rule: a​a​=a5​5​=5=65​+5+1⋅5
Multiply the numbers: 1⋅5=5=65​+5+5
Add the numbers: 5+5=10=65​+10
=65​+10
=2​5−5​​(65​+10)
Expand 2​5−5​​(65​+10):610​5−5​​+102​5−5​​
2​5−5​​(65​+10)
Apply the distributive law: a(b+c)=ab+aca=2​5−5​​,b=65​,c=10=2​5−5​​⋅65​+2​5−5​​⋅10
=62​5​5−5​​+102​5−5​​
62​5​5−5​​=610​5−5​​
62​5​5−5​​
Apply radical rule: a​b​=a⋅b​2​5​5−5​​=2⋅5(5−5​)​=62⋅5(5−5​)​
Multiply the numbers: 2⋅5=10=610(5−5​)​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥010(5−5​)​=10​5−5​​=610​5−5​​
=610​5−5​​+102​5−5​​
=610​5−5​​+102​5−5​​
2(5−5​)(5+5​)=40
2(5−5​)(5+5​)
Expand (5−5​)(5+5​):20
(5−5​)(5+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=2⋅20
Expand 2⋅20:40
2⋅20
Distribute parentheses=2⋅20
Multiply the numbers: 2⋅20=40=40
=40
=40610​5−5​​+102​5−5​​​
Factor 610​5−5​​+102​5−5​​:25−5​​(310​+52​)
610​5−5​​+102​5−5​​
Rewrite as=3⋅25−5​​10​+5⋅25−5​​2​
Factor out common term 25−5​​=25−5​​(310​+52​)
=4025−5​​(310​+52​)​
Cancel the common factor: 2=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
=20(310​+52​)5−5​​​
=−20(310​+52​)5−5​​​
−20(310​+52​)5−5​​​−sec(x)=1.5
Move 20(310​+52​)5−5​​​to the right side
−20(310​+52​)5−5​​​−sec(x)=1.5
Add 20(310​+52​)5−5​​​ to both sides−20(310​+52​)5−5​​​−sec(x)+20(310​+52​)5−5​​​=1.5+20(310​+52​)5−5​​​
Simplify
−20(310​+52​)5−5​​​−sec(x)+20(310​+52​)5−5​​​=1.5+20(310​+52​)5−5​​​
Simplify −20(310​+52​)5−5​​​−sec(x)+20(310​+52​)5−5​​​:−sec(x)
−20(310​+52​)5−5​​​−sec(x)+20(310​+52​)5−5​​​
Add similar elements: −20(310​+52​)5−5​​​+20(310​+52​)5−5​​​=0
=−sec(x)
Simplify 1.5+20(310​+52​)5−5​​​:2.87638…
1.5+20(310​+52​)5−5​​​
20(310​+52​)5−5​​​=2016.55790…5−5​​​
20(310​+52​)5−5​​​
310​=9.48683…
310​
Convert element to a decimal form10​=3.16227…=3⋅3.16227…
Multiply the numbers: 3⋅3.16227…=9.48683…=9.48683…
52​=7.07106…
52​
Convert element to a decimal form2​=1.41421…=5⋅1.41421…
Multiply the numbers: 5⋅1.41421…=7.07106…=7.07106…
=20(7.07106…+9.48683…)5−5​​​
Add the numbers: 9.48683…+7.07106…=16.55790…=2016.55790…5−5​​​
=1.5+2016.55790…5−5​​​
2016.55790…5−5​​​=1.37638…
2016.55790…5−5​​​
Convert element to a decimal form5−5​​=1.66250…=201.66250…⋅16.55790…​
Multiply the numbers: 16.55790…⋅1.66250…=27.52763…=2027.52763…​
Divide the numbers: 2027.52763…​=1.37638…=1.37638…
=1.5+1.37638…
Add the numbers: 1.5+1.37638…=2.87638…=2.87638…
−sec(x)=2.87638…
−sec(x)=2.87638…
−sec(x)=2.87638…
Divide both sides by −1
−sec(x)=2.87638…
Divide both sides by −1−1−sec(x)​=−12.87638…​
Simplifysec(x)=−2.87638…
sec(x)=−2.87638…
Apply trig inverse properties
sec(x)=−2.87638…
General solutions for sec(x)=−2.87638…sec(x)=−a⇒x=arcsec(−a)+2πn,x=−arcsec(−a)+2πnx=arcsec(−2.87638…)+2πn,x=−arcsec(−2.87638…)+2πn
x=arcsec(−2.87638…)+2πn,x=−arcsec(−2.87638…)+2πn
Show solutions in decimal formx=1.92586…+2πn,x=−1.92586…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/(cos^2(x))+(1/(2cos(x)))=0cos(α)=sqrt((1+1/5)/2)(tan(x))(sin^2(x)-a)(sec(x)-a)=0,0<a<1sin(pi/2 (x+1))= 2/5sin(*+pi/2)=cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(-pi/5)-sec(x)=1.5 ?

    The general solution for cot(-pi/5)-sec(x)=1.5 is x=1.92586…+2pin,x=-1.92586…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024