Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x-10)cot(20-x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x−10∘)cot(20∘−x)=1

Solution

x=180∘n+15∘,x=105∘+180∘n
+1
Radians
x=12π​+πn,x=127π​+πn
Solution steps
tan(x−10∘)cot(20∘−x)=1
Subtract 1 from both sidestan(x−10∘)cot(20∘−x)−1=0
Simplify tan(x−10∘)cot(20∘−x)−1:tan(1818x−180∘​)cot(9180∘−9x​)−1
tan(x−10∘)cot(20∘−x)−1
tan(x−10∘)cot(20∘−x)=tan(1818x−180∘​)cot(9180∘−9x​)
tan(x−10∘)cot(20∘−x)
Join x−10∘:1818x−180∘​
x−10∘
Convert element to fraction: x=18x18​=18x⋅18​−10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18x⋅18−180∘​
=tan(1818x−180∘​)cot(−x+20∘)
Join 20∘−x:9180∘−9x​
20∘−x
Convert element to fraction: x=9x9​=20∘−9x⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9180∘−x⋅9​
=tan(1818x−180∘​)cot(9−9x+180∘​)
=tan(1818x−180∘​)cot(9−9x+180∘​)−1
tan(1818x−180∘​)cot(9180∘−9x​)−1=0
Express with sin, cos
−1+cot(9180∘−9x​)tan(18−180∘+18x​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1+sin(9180∘−9x​)cos(9180∘−9x​)​tan(18−180∘+18x​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+sin(9180∘−9x​)cos(9180∘−9x​)​⋅cos(18−180∘+18x​)sin(18−180∘+18x​)​
Simplify −1+sin(9180∘−9x​)cos(9180∘−9x​)​⋅cos(18−180∘+18x​)sin(18−180∘+18x​)​:sin(9180∘−9x​)cos(18−180∘+18x​)−sin(9180∘−9x​)cos(18−180∘+18x​)+cos(9180∘−9x​)sin(18−180∘+18x​)​
−1+sin(9180∘−9x​)cos(9180∘−9x​)​⋅cos(18−180∘+18x​)sin(18−180∘+18x​)​
Multiply sin(9180∘−9x​)cos(9180∘−9x​)​⋅cos(18−180∘+18x​)sin(18−180∘+18x​)​:sin(9−9x+180∘​)cos(1818x−180∘​)cos(9−9x+180∘​)sin(1818x−180∘​)​
sin(9180∘−9x​)cos(9180∘−9x​)​⋅cos(18−180∘+18x​)sin(18−180∘+18x​)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(9180∘−9x​)cos(18−180∘+18x​)cos(9180∘−9x​)sin(18−180∘+18x​)​
=−1+sin(9−9x+180∘​)cos(1818x−180∘​)cos(9−9x+180∘​)sin(1818x−180∘​)​
Convert element to fraction: 1=sin(9180∘−9x​)cos(18−180∘+18x​)1sin(9180∘−9x​)cos(18−180∘+18x​)​=−sin(9180∘−9x​)cos(18−180∘+18x​)1⋅sin(9180∘−9x​)cos(18−180∘+18x​)​+sin(9180∘−9x​)cos(18−180∘+18x​)cos(9180∘−9x​)sin(18−180∘+18x​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(9180∘−9x​)cos(18−180∘+18x​)−1⋅sin(9180∘−9x​)cos(18−180∘+18x​)+cos(9180∘−9x​)sin(18−180∘+18x​)​
Multiply: 1⋅sin(9180∘−9x​)=sin(9180∘−9x​)=sin(9−9x+180∘​)cos(1818x−180∘​)−sin(9−9x+180∘​)cos(1818x−180∘​)+cos(9−9x+180∘​)sin(1818x−180∘​)​
=sin(9180∘−9x​)cos(18−180∘+18x​)−sin(9180∘−9x​)cos(18−180∘+18x​)+cos(9180∘−9x​)sin(18−180∘+18x​)​
cos(18−180∘+18x​)sin(9180∘−9x​)−cos(18−180∘+18x​)sin(9180∘−9x​)+cos(9180∘−9x​)sin(18−180∘+18x​)​=0
g(x)f(x)​=0⇒f(x)=0−cos(18−180∘+18x​)sin(9180∘−9x​)+cos(9180∘−9x​)sin(18−180∘+18x​)=0
Rewrite using trig identities
−cos(18−180∘+18x​)sin(9180∘−9x​)+cos(9180∘−9x​)sin(18−180∘+18x​)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(18−180∘+18x​−9180∘−9x​)
sin(18−180∘+18x​−9180∘−9x​)=0
General solutions for sin(18−180∘+18x​−9180∘−9x​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
18−180∘+18x​−9180∘−9x​=0+360∘n,18−180∘+18x​−9180∘−9x​=180∘+360∘n
18−180∘+18x​−9180∘−9x​=0+360∘n,18−180∘+18x​−9180∘−9x​=180∘+360∘n
Solve 18−180∘+18x​−9180∘−9x​=0+360∘n:x=180∘n+15∘
18−180∘+18x​−9180∘−9x​=0+360∘n
0+360∘n=360∘n18−180∘+18x​−9180∘−9x​=360∘n
Multiply by LCM
18−180∘+18x​−9180∘−9x​=360∘n
Find Least Common Multiplier of 18,9:18
18,9
Least Common Multiplier (LCM)
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 18 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Multiply by LCM=1818−180∘+18x​⋅18−9180∘−9x​⋅18=360∘n⋅18
Simplify
18−180∘+18x​⋅18−9180∘−9x​⋅18=360∘n⋅18
Simplify 18−180∘+18x​⋅18:−180∘+18x
18−180∘+18x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(−180∘+18x)⋅18​
Cancel the common factor: 18=−−180∘+18x
Simplify −9180∘−9x​⋅18:−2(−9x+180∘)
−9180∘−9x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=−9(180∘−9x)⋅18​
Divide the numbers: 918​=2=−2(−9x+180∘)
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
−180∘+18x−2(−9x+180∘)=6480∘n
−180∘+18x−2(−9x+180∘)=6480∘n
−180∘+18x−2(−9x+180∘)=6480∘n
Expand −180∘+18x−2(−9x+180∘):36x−540∘
−180∘+18x−2(−9x+180∘)
Expand −2(−9x+180∘):18x−360∘
−2(−9x+180∘)
Apply the distributive law: a(b+c)=ab+aca=−2,b=−9x,c=180∘=−2(−9x)+(−2)180∘
Apply minus-plus rules−(−a)=a,+(−a)=−a=2⋅9x−360∘
Multiply the numbers: 2⋅9=18=18x−360∘
=−180∘+18x+18x−360∘
Simplify −180∘+18x+18x−360∘:36x−540∘
−180∘+18x+18x−360∘
Group like terms=18x+18x−180∘−360∘
Add similar elements: 18x+18x=36x=36x−180∘−360∘
Add similar elements: −180∘−360∘=−540∘=36x−540∘
=36x−540∘
36x−540∘=6480∘n
Move 540∘to the right side
36x−540∘=6480∘n
Add 540∘ to both sides36x−540∘+540∘=6480∘n+540∘
Simplify36x=6480∘n+540∘
36x=6480∘n+540∘
Divide both sides by 36
36x=6480∘n+540∘
Divide both sides by 363636x​=366480∘n​+15∘
Simplify
3636x​=366480∘n​+15∘
Simplify 3636x​:x
3636x​
Divide the numbers: 3636​=1=x
Simplify 366480∘n​+15∘:180∘n+15∘
366480∘n​+15∘
Divide the numbers: 3636​=1=180∘n+15∘
Cancel 15∘:15∘
15∘
Cancel the common factor: 3=15∘
=180∘n+15∘
x=180∘n+15∘
x=180∘n+15∘
x=180∘n+15∘
Solve 18−180∘+18x​−9180∘−9x​=180∘+360∘n:x=105∘+180∘n
18−180∘+18x​−9180∘−9x​=180∘+360∘n
Multiply by LCM
18−180∘+18x​−9180∘−9x​=180∘+360∘n
Find Least Common Multiplier of 18,9:18
18,9
Least Common Multiplier (LCM)
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 18 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Multiply by LCM=1818−180∘+18x​⋅18−9180∘−9x​⋅18=180∘18+360∘n⋅18
Simplify
18−180∘+18x​⋅18−9180∘−9x​⋅18=180∘18+360∘n⋅18
Simplify 18−180∘+18x​⋅18:−180∘+18x
18−180∘+18x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=18(−180∘+18x)⋅18​
Cancel the common factor: 18=−−180∘+18x
Simplify −9180∘−9x​⋅18:−2(−9x+180∘)
−9180∘−9x​⋅18
Multiply fractions: a⋅cb​=ca⋅b​=−9(180∘−9x)⋅18​
Divide the numbers: 918​=2=−2(−9x+180∘)
Simplify 180∘18:3240∘
180∘18
Apply the commutative law: 180∘18=3240∘3240∘
Simplify 360∘n⋅18:6480∘n
360∘n⋅18
Multiply the numbers: 2⋅18=36=6480∘n
−180∘+18x−2(−9x+180∘)=3240∘+6480∘n
−180∘+18x−2(−9x+180∘)=3240∘+6480∘n
−180∘+18x−2(−9x+180∘)=3240∘+6480∘n
Expand −180∘+18x−2(−9x+180∘):36x−540∘
−180∘+18x−2(−9x+180∘)
Expand −2(−9x+180∘):18x−360∘
−2(−9x+180∘)
Apply the distributive law: a(b+c)=ab+aca=−2,b=−9x,c=180∘=−2(−9x)+(−2)180∘
Apply minus-plus rules−(−a)=a,+(−a)=−a=2⋅9x−360∘
Multiply the numbers: 2⋅9=18=18x−360∘
=−180∘+18x+18x−360∘
Simplify −180∘+18x+18x−360∘:36x−540∘
−180∘+18x+18x−360∘
Group like terms=18x+18x−180∘−360∘
Add similar elements: 18x+18x=36x=36x−180∘−360∘
Add similar elements: −180∘−360∘=−540∘=36x−540∘
=36x−540∘
36x−540∘=3240∘+6480∘n
Move 540∘to the right side
36x−540∘=3240∘+6480∘n
Add 540∘ to both sides36x−540∘+540∘=3240∘+6480∘n+540∘
Simplify36x=3780∘+6480∘n
36x=3780∘+6480∘n
Divide both sides by 36
36x=3780∘+6480∘n
Divide both sides by 363636x​=105∘+366480∘n​
Simplify
3636x​=105∘+366480∘n​
Simplify 3636x​:x
3636x​
Divide the numbers: 3636​=1=x
Simplify 105∘+366480∘n​:105∘+180∘n
105∘+366480∘n​
Cancel 105∘:105∘
105∘
Cancel the common factor: 3=105∘
=105∘+366480∘n​
Divide the numbers: 3636​=1=105∘+180∘n
x=105∘+180∘n
x=105∘+180∘n
x=105∘+180∘n
x=180∘n+15∘,x=105∘+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3csc(2x)-4sin(2x)=03tan(B)-4=tan(B)-2sin(2x)=5cos(2x)5sec(2x)+2=02.1sin(θ)=1.33sin(θ+90)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x-10)cot(20-x)=1 ?

    The general solution for tan(x-10)cot(20-x)=1 is x=180n+15,x=105+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024