Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3csc(2x)-4sin(2x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3csc(2x)−4sin(2x)=0

Solution

x=6π​+πn,x=3π​+πn,x=32π​+πn,x=65π​+πn
+1
Degrees
x=30∘+180∘n,x=60∘+180∘n,x=120∘+180∘n,x=150∘+180∘n
Solution steps
3csc(2x)−4sin(2x)=0
Rewrite using trig identities
3csc(2x)−4sin(2x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=3csc(2x)−4⋅csc(2x)1​
4⋅csc(2x)1​=csc(2x)4​
4⋅csc(2x)1​
Multiply fractions: a⋅cb​=ca⋅b​=csc(2x)1⋅4​
Multiply the numbers: 1⋅4=4=csc(2x)4​
=3csc(2x)−csc(2x)4​
−csc(2x)4​+3csc(2x)=0
Solve by substitution
−csc(2x)4​+3csc(2x)=0
Let: csc(2x)=u−u4​+3u=0
−u4​+3u=0:u=323​​,u=−323​​
−u4​+3u=0
Multiply both sides by u
−u4​+3u=0
Multiply both sides by u−u4​u+3uu=0⋅u
Simplify
−u4​u+3uu=0⋅u
Simplify −u4​u:−4
−u4​u
Multiply fractions: a⋅cb​=ca⋅b​=−u4u​
Cancel the common factor: u=−4
Simplify 3uu:3u2
3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=3u1+1
Add the numbers: 1+1=2=3u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−4+3u2=0
−4+3u2=0
−4+3u2=0
Solve −4+3u2=0:u=323​​,u=−323​​
−4+3u2=0
Move 4to the right side
−4+3u2=0
Add 4 to both sides−4+3u2+4=0+4
Simplify3u2=4
3u2=4
Divide both sides by 3
3u2=4
Divide both sides by 333u2​=34​
Simplifyu2=34​
u2=34​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=34​​,u=−34​​
34​​=323​​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
−34​​=−323​​
−34​​
Simplify 34​​:3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=323​​,u=−323​​
u=323​​,u=−323​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −u4​+3u and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=323​​,u=−323​​
Substitute back u=csc(2x)csc(2x)=323​​,csc(2x)=−323​​
csc(2x)=323​​,csc(2x)=−323​​
csc(2x)=323​​:x=6π​+πn,x=3π​+πn
csc(2x)=323​​
General solutions for csc(2x)=323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
2x=3π​+2πn,2x=32π​+2πn
2x=3π​+2πn,2x=32π​+2πn
Solve 2x=3π​+2πn:x=6π​+πn
2x=3π​+2πn
Divide both sides by 2
2x=3π​+2πn
Divide both sides by 222x​=23π​​+22πn​
Simplify
22x​=23π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 23π​​+22πn​:6π​+πn
23π​​+22πn​
23π​​=6π​
23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=6π​+πn
x=6π​+πn
x=6π​+πn
x=6π​+πn
Solve 2x=32π​+2πn:x=3π​+πn
2x=32π​+2πn
Divide both sides by 2
2x=32π​+2πn
Divide both sides by 222x​=232π​​+22πn​
Simplify
22x​=232π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+22πn​:3π​+πn
232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=3π​+πn
x=3π​+πn
x=3π​+πn
x=3π​+πn
x=6π​+πn,x=3π​+πn
csc(2x)=−323​​:x=32π​+πn,x=65π​+πn
csc(2x)=−323​​
General solutions for csc(2x)=−323​​
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
2x=34π​+2πn,2x=35π​+2πn
2x=34π​+2πn,2x=35π​+2πn
Solve 2x=34π​+2πn:x=32π​+πn
2x=34π​+2πn
Divide both sides by 2
2x=34π​+2πn
Divide both sides by 222x​=234π​​+22πn​
Simplify
22x​=234π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 234π​​+22πn​:32π​+πn
234π​​+22πn​
234π​​=32π​
234π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π​
Multiply the numbers: 3⋅2=6=64π​
Cancel the common factor: 2=32π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=32π​+πn
x=32π​+πn
x=32π​+πn
x=32π​+πn
Solve 2x=35π​+2πn:x=65π​+πn
2x=35π​+2πn
Divide both sides by 2
2x=35π​+2πn
Divide both sides by 222x​=235π​​+22πn​
Simplify
22x​=235π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 235π​​+22πn​:65π​+πn
235π​​+22πn​
235π​​=65π​
235π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅25π​
Multiply the numbers: 3⋅2=6=65π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=65π​+πn
x=65π​+πn
x=65π​+πn
x=65π​+πn
x=32π​+πn,x=65π​+πn
Combine all the solutionsx=6π​+πn,x=3π​+πn,x=32π​+πn,x=65π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3tan(B)-4=tan(B)-2sin(2x)=5cos(2x)5sec(2x)+2=02.1sin(θ)=1.33sin(θ+90)1sin(45)=1.33sin(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3csc(2x)-4sin(2x)=0 ?

    The general solution for 3csc(2x)-4sin(2x)=0 is x= pi/6+pin,x= pi/3+pin,x=(2pi)/3+pin,x=(5pi)/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024