Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(x)=cos^3(x)tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(x)=cos3(x)tan(x)

Solution

x=2πn,x=π+2πn,x=0.42707…+2πn,x=π−0.42707…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=24.46980…∘+360∘n,x=155.53019…∘+360∘n
Solution steps
2sin2(x)=cos3(x)tan(x)
Subtract cos3(x)tan(x) from both sides2sin2(x)−cos3(x)tan(x)=0
Rewrite using trig identities
2sin2(x)−cos3(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=2sin2(x)−cos3(x)cos(x)sin(x)​
cos3(x)cos(x)sin(x)​=cos2(x)sin(x)
cos3(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)cos3(x)​
Cancel the common factor: cos(x)=cos2(x)sin(x)
=2sin2(x)−cos2(x)sin(x)
2sin2(x)−cos2(x)sin(x)=0
Factor 2sin2(x)−cos2(x)sin(x):sin(x)(2sin(x)−cos2(x))
2sin2(x)−cos2(x)sin(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=2sin(x)sin(x)−sin(x)cos2(x)
Factor out common term sin(x)=sin(x)(2sin(x)−cos2(x))
sin(x)(2sin(x)−cos2(x))=0
Solving each part separatelysin(x)=0or2sin(x)−cos2(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
2sin(x)−cos2(x)=0:x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
2sin(x)−cos2(x)=0
Rewrite using trig identities
−cos2(x)+2sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+2sin(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+2sin(x)
−1+sin2(x)+2sin(x)=0
Solve by substitution
−1+sin2(x)+2sin(x)=0
Let: sin(x)=u−1+u2+2u=0
−1+u2+2u=0:u=−1+2​,u=−1−2​
−1+u2+2u=0
Write in the standard form ax2+bx+c=0u2+2u−1=0
Solve with the quadratic formula
u2+2u−1=0
Quadratic Equation Formula:
For a=1,b=2,c=−1u1,2​=2⋅1−2±22−4⋅1⋅(−1)​​
u1,2​=2⋅1−2±22−4⋅1⋅(−1)​​
22−4⋅1⋅(−1)​=22​
22−4⋅1⋅(−1)​
Apply rule −(−a)=a=22+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=22+4​
22=4=4+4​
Add the numbers: 4+4=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
u1,2​=2⋅1−2±22​​
Separate the solutionsu1​=2⋅1−2+22​​,u2​=2⋅1−2−22​​
u=2⋅1−2+22​​:−1+2​
2⋅1−2+22​​
Multiply the numbers: 2⋅1=2=2−2+22​​
Factor −2+22​:2(−1+2​)
−2+22​
Rewrite as=−2⋅1+22​
Factor out common term 2=2(−1+2​)
=22(−1+2​)​
Divide the numbers: 22​=1=−1+2​
u=2⋅1−2−22​​:−1−2​
2⋅1−2−22​​
Multiply the numbers: 2⋅1=2=2−2−22​​
Factor −2−22​:−2(1+2​)
−2−22​
Rewrite as=−2⋅1−22​
Factor out common term 2=−2(1+2​)
=−22(1+2​)​
Divide the numbers: 22​=1=−(1+2​)
Negate −(1+2​)=−1−2​=−1−2​
The solutions to the quadratic equation are:u=−1+2​,u=−1−2​
Substitute back u=sin(x)sin(x)=−1+2​,sin(x)=−1−2​
sin(x)=−1+2​,sin(x)=−1−2​
sin(x)=−1+2​:x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
sin(x)=−1+2​
Apply trig inverse properties
sin(x)=−1+2​
General solutions for sin(x)=−1+2​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
sin(x)=−1−2​:No Solution
sin(x)=−1−2​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin(−1+2​)+2πn,x=π−arcsin(−1+2​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=0.42707…+2πn,x=π−0.42707…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x-10)cot(20-x)=13csc(2x)-4sin(2x)=03tan(B)-4=tan(B)-2sin(2x)=5cos(2x)5sec(2x)+2=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024