Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor n,y=-sin(2((3pi)/4+pin))2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

n=2πarcsin(−2y​)​+k−43​,n=k+4π−π+2arcsin(2y​)​
Solution steps
y=−sin(2(43π​+πn))⋅2
Switch sides−sin(2(43π​+πn))⋅2=y
Divide both sides by −2
−sin(2(43π​+πn))⋅2=y
Divide both sides by −2−2−sin(2(43π​+πn))⋅2​=−2y​
Simplifysin(2(43π​+πn))=−2y​
sin(2(43π​+πn))=−2y​
Apply trig inverse properties
sin(2(43π​+πn))=−2y​
General solutions for sin(2(43π​+πn))=−2y​sin(x)=a⇒x=arcsin(a)+2πk,x=π+arcsin(a)+2πk2(43π​+πn)=arcsin(−2y​)+2πk,2(43π​+πn)=π+arcsin(2y​)+2πk
2(43π​+πn)=arcsin(−2y​)+2πk,2(43π​+πn)=π+arcsin(2y​)+2πk
Solve 2(43π​+πn)=arcsin(−2y​)+2πk:n=2πarcsin(−2y​)​+k−43​
2(43π​+πn)=arcsin(−2y​)+2πk
Divide both sides by 2
2(43π​+πn)=arcsin(−2y​)+2πk
Divide both sides by 222(43π​+πn)​=2arcsin(−2y​)​+22πk​
Simplify43π​+πn=2arcsin(−2y​)​+πk
43π​+πn=2arcsin(−2y​)​+πk
Move 43π​to the right side
43π​+πn=2arcsin(−2y​)​+πk
Subtract 43π​ from both sides43π​+πn−43π​=2arcsin(−2y​)​+πk−43π​
Simplifyπn=2arcsin(−2y​)​+πk−43π​
πn=2arcsin(−2y​)​+πk−43π​
Divide both sides by π
πn=2arcsin(−2y​)​+πk−43π​
Divide both sides by πππn​=π2arcsin(−2y​)​​+ππk​−π43π​​
Simplify
ππn​=π2arcsin(−2y​)​​+ππk​−π43π​​
Simplify ππn​:n
ππn​
Cancel the common factor: π=n
Simplify π2arcsin(−2y​)​​+ππk​−π43π​​:2πarcsin(−2y​)​+k−43​
π2arcsin(−2y​)​​+ππk​−π43π​​
π2arcsin(−2y​)​​=2πarcsin(−2y​)​
π2arcsin(−2y​)​​
Apply the fraction rule: acb​​=c⋅ab​=2πarcsin(−2y​)​
ππk​=k
ππk​
Cancel the common factor: π=k
π43π​​=43​
π43π​​
Apply the fraction rule: acb​​=c⋅ab​=4π3π​
Cancel the common factor: π=43​
=2πarcsin(−2y​)​+k−43​
n=2πarcsin(−2y​)​+k−43​
n=2πarcsin(−2y​)​+k−43​
n=2πarcsin(−2y​)​+k−43​
Solve 2(43π​+πn)=π+arcsin(2y​)+2πk:n=k+4π−π+2arcsin(2y​)​
2(43π​+πn)=π+arcsin(2y​)+2πk
Divide both sides by 2
2(43π​+πn)=π+arcsin(2y​)+2πk
Divide both sides by 222(43π​+πn)​=2π​+2arcsin(2y​)​+22πk​
Simplify43π​+πn=2π​+2arcsin(2y​)​+πk
43π​+πn=2π​+2arcsin(2y​)​+πk
Move 43π​to the right side
43π​+πn=2π​+2arcsin(2y​)​+πk
Subtract 43π​ from both sides43π​+πn−43π​=2π​+2arcsin(2y​)​+πk−43π​
Simplify
43π​+πn−43π​=2π​+2arcsin(2y​)​+πk−43π​
Simplify 43π​+πn−43π​:πn
43π​+πn−43π​
Add similar elements: 43π​−43π​=0
=πn
Simplify 2π​+2arcsin(2y​)​+πk−43π​:πk+4−π+2arcsin(2y​)​
2π​+2arcsin(2y​)​+πk−43π​
Group like terms=πk+2π​−43π​+2arcsin(2y​)​
Combine the fractions 2π​+2arcsin(2y​)​:2π+arcsin(2y​)​
Apply rule ca​±cb​=ca±b​=2π+arcsin(2y​)​
=πk+2arcsin(2y​)+π​−43π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π+arcsin(2y​)​:multiply the denominator and numerator by 22π+arcsin(2y​)​=2⋅2(π+arcsin(2y​))⋅2​=4(π+arcsin(2y​))⋅2​
=4(π+arcsin(2y​))⋅2​−43π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4(π+arcsin(2y​))⋅2−3π​
Expand (π+arcsin(2y​))⋅2−3π:−π+2arcsin(2y​)
(π+arcsin(2y​))⋅2−3π
=2(π+arcsin(2y​))−3π
Expand 2(π+arcsin(2y​)):2π+2arcsin(2y​)
2(π+arcsin(2y​))
Apply the distributive law: a(b+c)=ab+aca=2,b=π,c=arcsin(2y​)=2π+2arcsin(2y​)
=2π+2arcsin(2y​)−3π
Simplify 2π+2arcsin(2y​)−3π:−π+2arcsin(2y​)
2π+2arcsin(2y​)−3π
Group like terms=2π−3π+2arcsin(2y​)
Add similar elements: 2π−3π=−π=−π+2arcsin(2y​)
=−π+2arcsin(2y​)
=πk+42arcsin(2y​)−π​
πn=πk+4−π+2arcsin(2y​)​
πn=πk+4−π+2arcsin(2y​)​
πn=πk+4−π+2arcsin(2y​)​
Divide both sides by π
πn=πk+4−π+2arcsin(2y​)​
Divide both sides by πππn​=ππk​+π4−π+2arcsin(2y​)​​
Simplify
ππn​=ππk​+π4−π+2arcsin(2y​)​​
Simplify ππn​:n
ππn​
Cancel the common factor: π=n
Simplify ππk​+π4−π+2arcsin(2y​)​​:k+4π−π+2arcsin(2y​)​
ππk​+π4−π+2arcsin(2y​)​​
Cancel ππk​:k
ππk​
Cancel the common factor: π=k
=k+π42arcsin(2y​)−π​​
Apply the fraction rule: acb​​=c⋅ab​=k+4π2arcsin(2y​)−π​
n=k+4π−π+2arcsin(2y​)​
n=k+4π−π+2arcsin(2y​)​
n=k+4π−π+2arcsin(2y​)​
n=2πarcsin(−2y​)​+k−43​,n=k+4π−π+2arcsin(2y​)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)= 18/72cos^2(θ)=1+sin(θ)3tan(x)=sin(x)5=sinh(x)-16cos(2x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024