Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sec^2(x)-1)/(sec^2(x))=sec^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)2sec2(x)−1​=sec2(x)

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
sec2(x)2sec2(x)−1​=sec2(x)
Solve by substitution
sec2(x)2sec2(x)−1​=sec2(x)
Let: sec(x)=uu22u2−1​=u2
u22u2−1​=u2:u=1,u=−1
u22u2−1​=u2
Multiply both sides by u2
u22u2−1​=u2
Multiply both sides by u2u22u2−1​u2=u2u2
Simplify u2u2:u4
u22u2−1​u2=u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=u2+2
Add the numbers: 2+2=4=u4
2u2−1=u4
2u2−1=u4
Solve 2u2−1=u4:u=1,u=−1
2u2−1=u4
Switch sidesu4=2u2−1
Move 1to the left side
u4=2u2−1
Add 1 to both sidesu4+1=2u2−1+1
Simplifyu4+1=2u2
u4+1=2u2
Move 2u2to the left side
u4+1=2u2
Subtract 2u2 from both sidesu4+1−2u2=2u2−2u2
Simplifyu4+1−2u2=0
u4+1−2u2=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−2u2+1=0
Rewrite the equation with v=u2 and v2=u4v2−2v+1=0
Solve v2−2v+1=0:v=1
v2−2v+1=0
Solve with the quadratic formula
v2−2v+1=0
Quadratic Equation Formula:
For a=1,b=−2,c=1v1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
v1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
(−2)2−4⋅1⋅1=0
(−2)2−4⋅1⋅1
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=22−4
22=4=4−4
Subtract the numbers: 4−4=0=0
v1,2​=2⋅1−(−2)±0​​
v=2⋅1−(−2)​
2⋅1−(−2)​=1
2⋅1−(−2)​
Apply rule −(−a)=a=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
v=1
The solution to the quadratic equation is:v=1
v=1
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
The solutions are
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u22u2−1​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
Substitute back u=sec(x)sec(x)=1,sec(x)=−1
sec(x)=1,sec(x)=−1
sec(x)=1:x=2πn
sec(x)=1
General solutions for sec(x)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
sec(x)=−1:x=π+2πn
sec(x)=−1
General solutions for sec(x)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
Combine all the solutionsx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

9(sin(x)-0.6pi)+8=0solvefor t,v=100cos(50t+20)vcos(2x)=sin(pi/2-x)sin(x)=sin(50)solvefor n,y=-sin(2((3pi)/4+pin))2

Frequently Asked Questions (FAQ)

  • What is the general solution for (2sec^2(x)-1)/(sec^2(x))=sec^2(x) ?

    The general solution for (2sec^2(x)-1)/(sec^2(x))=sec^2(x) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024