Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2-2sin(x))/a = 2/(sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

a2−2sin(x)​=sin(x)2​

Solution

x=arcsin(−2−1+−4a+1​​)+2πn,x=π+arcsin(2−1+−4a+1​​)+2πn,x=arcsin(2−4a+1​+1​)+2πn,x=π+arcsin(−2−4a+1​+1​)+2πn
Solution steps
a2−2sin(x)​=sin(x)2​
Solve by substitution
a2−2sin(x)​=sin(x)2​
Let: sin(x)=ua2−2u​=u2​
a2−2u​=u2​:u=−2−1+−4a+1​​,u=2−4a+1​+1​;a=0
a2−2u​=u2​
Cross multiply
a2−2u​=u2​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(2−2u)u=a⋅2
(2−2u)u=a⋅2
Solve (2−2u)u=a⋅2:u=−2−1+−4a+1​​,u=2−4a+1​+1​
(2−2u)u=a⋅2
Expand (2−2u)u:2u−2u2
(2−2u)u
=u(2−2u)
Apply the distributive law: a(b−c)=ab−aca=u,b=2,c=2u=u⋅2−u⋅2u
=2u−2uu
2uu=2u2
2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
=2u−2u2
2u−2u2=a⋅2
Move a2to the left side
2u−2u2=a⋅2
Subtract a2 from both sides2u−2u2−a⋅2=a⋅2−a⋅2
Simplify2u−2u2−a⋅2=0
2u−2u2−a⋅2=0
Write in the standard form ax2+bx+c=0−2u2+2u−a⋅2=0
Solve with the quadratic formula
−2u2+2u−a⋅2=0
Quadratic Equation Formula:
For a=−2,b=2,c=−a2u1,2​=2(−2)−2±22−4(−2)(−a⋅2)​​
u1,2​=2(−2)−2±22−4(−2)(−a⋅2)​​
Simplify 22−4(−2)(−a⋅2)​:21−4a​
22−4(−2)(−a⋅2)​
Apply rule −(−a)=a=22−4⋅2a⋅2​
Multiply the numbers: 4⋅2⋅2=16=22−16a​
Factor 22−16a:4(1−4a)
22−16a
Rewrite as=4⋅1−4⋅4a
Factor out common term 4=4(1−4a)
=4(1−4a)​
Apply radical rule: assuming a≥0,b≥0=4​−4a+1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2−4a+1​
u1,2​=2(−2)−2±21−4a​​
Separate the solutionsu1​=2(−2)−2+21−4a​​,u2​=2(−2)−2−21−4a​​
u=2(−2)−2+21−4a​​:−2−1+−4a+1​​
2(−2)−2+21−4a​​
Remove parentheses: (−a)=−a=−2⋅2−2+21−4a​​
Multiply the numbers: 2⋅2=4=−4−2+2−4a+1​​
Apply the fraction rule: −ba​=−ba​=−4−2+21−4a​​
Cancel 4−2+21−4a​​:2−4a+1​−1​
4−2+21−4a​​
Factor −2+21−4a​:2(−1+1−4a​)
−2+21−4a​
Rewrite as=−2⋅1+21−4a​
Factor out common term 2=2(−1+1−4a​)
=42(−1+1−4a​)​
Cancel the common factor: 2=2−1+−4a+1​​
=−2−4a+1​−1​
=−2−1+−4a+1​​
u=2(−2)−2−21−4a​​:2−4a+1​+1​
2(−2)−2−21−4a​​
Remove parentheses: (−a)=−a=−2⋅2−2−21−4a​​
Multiply the numbers: 2⋅2=4=−4−2−2−4a+1​​
Apply the fraction rule: −ba​=−ba​=−4−2−21−4a​​
Cancel 4−2−21−4a​​:−2−4a+1​+1​
4−2−21−4a​​
Factor −2−21−4a​:−2(1+1−4a​)
−2−21−4a​
Rewrite as=−2⋅1−21−4a​
Factor out common term 2=−2(1+1−4a​)
=−42(1+1−4a​)​
Cancel the common factor: 2=−2−4a+1​+1​
=−(−2−4a+1​+1​)
Apply rule −(−a)=a=2−4a+1​+1​
The solutions to the quadratic equation are:u=−2−1+−4a+1​​,u=2−4a+1​+1​
u=−2−1+−4a+1​​,u=2−4a+1​+1​;a=0
Substitute back u=sin(x)sin(x)=−2−1+−4a+1​​,sin(x)=2−4a+1​+1​;a=0
sin(x)=−2−1+−4a+1​​,sin(x)=2−4a+1​+1​;a=0
sin(x)=−2−1+−4a+1​​:x=arcsin(−2−1+−4a+1​​)+2πn,x=π+arcsin(2−1+−4a+1​​)+2πn
sin(x)=−2−1+−4a+1​​
Apply trig inverse properties
sin(x)=−2−1+−4a+1​​
General solutions for sin(x)=−2−1+−4a+1​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−2−1+−4a+1​​)+2πn,x=π+arcsin(2−1+−4a+1​​)+2πn
x=arcsin(−2−1+−4a+1​​)+2πn,x=π+arcsin(2−1+−4a+1​​)+2πn
sin(x)=2−4a+1​+1​:x=arcsin(2−4a+1​+1​)+2πn,x=π+arcsin(−2−4a+1​+1​)+2πn
sin(x)=2−4a+1​+1​
Apply trig inverse properties
sin(x)=2−4a+1​+1​
General solutions for sin(x)=2−4a+1​+1​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(2−4a+1​+1​)+2πn,x=π+arcsin(−2−4a+1​+1​)+2πn
x=arcsin(2−4a+1​+1​)+2πn,x=π+arcsin(−2−4a+1​+1​)+2πn
Combine all the solutionsx=arcsin(−2−1+−4a+1​​)+2πn,x=π+arcsin(2−1+−4a+1​​)+2πn,x=arcsin(2−4a+1​+1​)+2πn,x=π+arcsin(−2−4a+1​+1​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(B)= 1/(sqrt(3))cos(7x)=sin(5x-6)100=211.49-20.96cosh(0.03291765x)3sec^2(x)+4cos^2(x)=7cos(θ)= 43/90

Frequently Asked Questions (FAQ)

  • What is the general solution for (2-2sin(x))/a = 2/(sin(x)) ?

    The general solution for (2-2sin(x))/a = 2/(sin(x)) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024