Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin(θ)=sqrt(3)sec(θ),0<= θ<180

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin(θ)=3​sec(θ),0≤θ<180∘

Solution

θ=30∘,θ=60∘
+1
Radians
θ=6π​,θ=3π​
Solution steps
4sin(θ)=3​sec(θ),0≤θ<180∘
Subtract 3​sec(θ) from both sides4sin(θ)−3​sec(θ)=0
Express with sin, cos
4sin(θ)−sec(θ)3​
Use the basic trigonometric identity: sec(x)=cos(x)1​=4sin(θ)−cos(θ)1​3​
Simplify 4sin(θ)−cos(θ)1​3​:cos(θ)4sin(θ)cos(θ)−3​​
4sin(θ)−cos(θ)1​3​
cos(θ)1​3​=cos(θ)3​​
cos(θ)1​3​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)1⋅3​​
Multiply: 1⋅3​=3​=cos(θ)3​​
=4sin(θ)−cos(θ)3​​
Convert element to fraction: 4sin(θ)=cos(θ)4sin(θ)cos(θ)​=cos(θ)4sin(θ)cos(θ)​−cos(θ)3​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(θ)4sin(θ)cos(θ)−3​​
=cos(θ)4sin(θ)cos(θ)−3​​
cos(θ)−3​+4cos(θ)sin(θ)​=0
g(x)f(x)​=0⇒f(x)=0−3​+4cos(θ)sin(θ)=0
Rewrite using trig identities
−3​+4cos(θ)sin(θ)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=−3​+4⋅2sin(2θ)​
−3​+4⋅2sin(2θ)​=0
4⋅2sin(2θ)​=2sin(2θ)
4⋅2sin(2θ)​
Multiply fractions: a⋅cb​=ca⋅b​=2sin(2θ)⋅4​
Divide the numbers: 24​=2=2sin(2θ)
−3​+2sin(2θ)=0
Move 3​to the right side
−3​+2sin(2θ)=0
Add 3​ to both sides−3​+2sin(2θ)+3​=0+3​
Simplify2sin(2θ)=3​
2sin(2θ)=3​
Divide both sides by 2
2sin(2θ)=3​
Divide both sides by 222sin(2θ)​=23​​
Simplifysin(2θ)=23​​
sin(2θ)=23​​
General solutions for sin(2θ)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ=60∘+360∘n,2θ=120∘+360∘n
2θ=60∘+360∘n,2θ=120∘+360∘n
Solve 2θ=60∘+360∘n:θ=30∘+180∘n
2θ=60∘+360∘n
Divide both sides by 2
2θ=60∘+360∘n
Divide both sides by 222θ​=260∘​+2360∘n​
Simplify
22θ​=260∘​+2360∘n​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 260∘​+2360∘n​:30∘+180∘n
260∘​+2360∘n​
260∘​=30∘
260∘​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2180∘​
Multiply the numbers: 3⋅2=6=30∘
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=30∘+180∘n
θ=30∘+180∘n
θ=30∘+180∘n
θ=30∘+180∘n
Solve 2θ=120∘+360∘n:θ=60∘+180∘n
2θ=120∘+360∘n
Divide both sides by 2
2θ=120∘+360∘n
Divide both sides by 222θ​=2120∘​+2360∘n​
Simplify
22θ​=2120∘​+2360∘n​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2120∘​+2360∘n​:60∘+180∘n
2120∘​+2360∘n​
2120∘​=60∘
2120∘​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2360∘​
Multiply the numbers: 3⋅2=6=60∘
Cancel the common factor: 2=60∘
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
=60∘+180∘n
θ=60∘+180∘n
θ=60∘+180∘n
θ=60∘+180∘n
θ=30∘+180∘n,θ=60∘+180∘n
Solutions for the range 0≤θ<180∘θ=30∘,θ=60∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(82))/(sin(x))=sqrt(5)(2cos^2(x))/(2(1-sin(x))-cos^2(x))=02sin(x)=-3tan(θ)=(-12)/5 ,cot(θ)sqrt(3)cos(1x)=-sin(1x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 4sin(θ)=sqrt(3)sec(θ),0<= θ<180 ?

    The general solution for 4sin(θ)=sqrt(3)sec(θ),0<= θ<180 is θ=30,θ=60
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024