Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)+4cos(x)+5=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)+4cos(x)+5=0

Solution

NoSolutionforx∈R
Solution steps
sin(x)+4cos(x)+5=0
Subtract 4cos(x) from both sidessin(x)+5=−4cos(x)
Square both sides(sin(x)+5)2=(−4cos(x))2
Subtract (−4cos(x))2 from both sides(sin(x)+5)2−16cos2(x)=0
Rewrite using trig identities
(5+sin(x))2−16cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(5+sin(x))2−16(1−sin2(x))
Simplify (5+sin(x))2−16(1−sin2(x)):17sin2(x)+10sin(x)+9
(5+sin(x))2−16(1−sin2(x))
(5+sin(x))2:25+10sin(x)+sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=5,b=sin(x)
=52+2⋅5sin(x)+sin2(x)
Simplify 52+2⋅5sin(x)+sin2(x):25+10sin(x)+sin2(x)
52+2⋅5sin(x)+sin2(x)
52=25=25+2⋅5sin(x)+sin2(x)
Multiply the numbers: 2⋅5=10=25+10sin(x)+sin2(x)
=25+10sin(x)+sin2(x)
=25+10sin(x)+sin2(x)−16(1−sin2(x))
Expand −16(1−sin2(x)):−16+16sin2(x)
−16(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−16,b=1,c=sin2(x)=−16⋅1−(−16)sin2(x)
Apply minus-plus rules−(−a)=a=−16⋅1+16sin2(x)
Multiply the numbers: 16⋅1=16=−16+16sin2(x)
=25+10sin(x)+sin2(x)−16+16sin2(x)
Simplify 25+10sin(x)+sin2(x)−16+16sin2(x):17sin2(x)+10sin(x)+9
25+10sin(x)+sin2(x)−16+16sin2(x)
Group like terms=10sin(x)+sin2(x)+16sin2(x)+25−16
Add similar elements: sin2(x)+16sin2(x)=17sin2(x)=10sin(x)+17sin2(x)+25−16
Add/Subtract the numbers: 25−16=9=17sin2(x)+10sin(x)+9
=17sin2(x)+10sin(x)+9
=17sin2(x)+10sin(x)+9
9+10sin(x)+17sin2(x)=0
Solve by substitution
9+10sin(x)+17sin2(x)=0
Let: sin(x)=u9+10u+17u2=0
9+10u+17u2=0:u=−175​+i1782​​,u=−175​−i1782​​
9+10u+17u2=0
Write in the standard form ax2+bx+c=017u2+10u+9=0
Solve with the quadratic formula
17u2+10u+9=0
Quadratic Equation Formula:
For a=17,b=10,c=9u1,2​=2⋅17−10±102−4⋅17⋅9​​
u1,2​=2⋅17−10±102−4⋅17⋅9​​
Simplify 102−4⋅17⋅9​:162​i
102−4⋅17⋅9​
Multiply the numbers: 4⋅17⋅9=612=102−612​
Apply imaginary number rule: −a​=ia​=i612−102​
−102+612​=162​
−102+612​
102=100=−100+612​
Add/Subtract the numbers: −100+612=512=512​
Prime factorization of 512:29
512
512divides by 2512=256⋅2=2⋅256
256divides by 2256=128⋅2=2⋅2⋅128
128divides by 2128=64⋅2=2⋅2⋅2⋅64
64divides by 264=32⋅2=2⋅2⋅2⋅2⋅32
32divides by 232=16⋅2=2⋅2⋅2⋅2⋅2⋅16
16divides by 216=8⋅2=2⋅2⋅2⋅2⋅2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2
=29
=29​
Apply exponent rule: ab+c=ab⋅ac=28⋅2​
Apply radical rule: =2​28​
Apply radical rule: 28​=228​=24=242​
Refine=162​
=162​i
u1,2​=2⋅17−10±162​i​
Separate the solutionsu1​=2⋅17−10+162​i​,u2​=2⋅17−10−162​i​
u=2⋅17−10+162​i​:−175​+i1782​​
2⋅17−10+162​i​
Multiply the numbers: 2⋅17=34=34−10+162​i​
Factor −10+162​i:2(−5+82​i)
−10+162​i
Rewrite as=−2⋅5+2⋅82​i
Factor out common term 2=2(−5+82​i)
=342(−5+82​i)​
Cancel the common factor: 2=17−5+82​i​
Rewrite 17−5+82​i​ in standard complex form: −175​+1782​​i
17−5+82​i​
Apply the fraction rule: ca±b​=ca​±cb​17−5+82​i​=−175​+1782​i​=−175​+1782​i​
=−175​+1782​​i
u=2⋅17−10−162​i​:−175​−i1782​​
2⋅17−10−162​i​
Multiply the numbers: 2⋅17=34=34−10−162​i​
Factor −10−162​i:−2(5+82​i)
−10−162​i
Rewrite as=−2⋅5−2⋅82​i
Factor out common term 2=−2(5+82​i)
=−342(5+82​i)​
Cancel the common factor: 2=−175+82​i​
Rewrite −175+82​i​ in standard complex form: −175​−1782​​i
−175+82​i​
Apply the fraction rule: ca±b​=ca​±cb​175+82​i​=−(175​)−(1782​i​)=−(175​)−(1782​i​)
Remove parentheses: (a)=a=−175​−1782​i​
=−175​−1782​​i
The solutions to the quadratic equation are:u=−175​+i1782​​,u=−175​−i1782​​
Substitute back u=sin(x)sin(x)=−175​+i1782​​,sin(x)=−175​−i1782​​
sin(x)=−175​+i1782​​,sin(x)=−175​−i1782​​
sin(x)=−175​+i1782​​:No Solution
sin(x)=−175​+i1782​​
NoSolution
sin(x)=−175​−i1782​​:No Solution
sin(x)=−175​−i1782​​
NoSolution
Combine all the solutionsNoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin(x)+4cos(x)+5=0
Remove the ones that don't agree with the equation.
NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(x)=-5sin(2t-pi/5)=-1/32(sin(x))^2-cos(x)-1=0arctan(3x)+arctan(x)= pi/44sin(θ)=sqrt(3)sec(θ),0<= θ<180

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)+4cos(x)+5=0 ?

    The general solution for sin(x)+4cos(x)+5=0 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024