Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,8sec(x)+8tan(x)=8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=2πn+2π
+1
Degrees
x=360∘+360∘n
Solution steps
8sec(x)+8tan(x)=8
Subtract 8 from both sides8sec(x)+8tan(x)−8=0
Express with sin, cos8⋅cos(x)1​+8⋅cos(x)sin(x)​−8=0
Simplify 8⋅cos(x)1​+8⋅cos(x)sin(x)​−8:cos(x)8+8sin(x)−8cos(x)​
8⋅cos(x)1​+8⋅cos(x)sin(x)​−8
8⋅cos(x)1​=cos(x)8​
8⋅cos(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅8​
Multiply the numbers: 1⋅8=8=cos(x)8​
8⋅cos(x)sin(x)​=cos(x)8sin(x)​
8⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅8​
=cos(x)8​+cos(x)8sin(x)​−8
Combine the fractions cos(x)8​+cos(x)8sin(x)​:cos(x)8+8sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)8+8sin(x)​
=cos(x)8sin(x)+8​−8
Convert element to fraction: 8=cos(x)8cos(x)​=cos(x)8+sin(x)⋅8​−cos(x)8cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)8+sin(x)⋅8−8cos(x)​
cos(x)8+8sin(x)−8cos(x)​=0
g(x)f(x)​=0⇒f(x)=08+8sin(x)−8cos(x)=0
Add 8cos(x) to both sides8+8sin(x)=8cos(x)
Square both sides(8+8sin(x))2=(8cos(x))2
Subtract (8cos(x))2 from both sides(8+8sin(x))2−64cos2(x)=0
Factor (8+8sin(x))2−64cos2(x):64(1+sin(x)+cos(x))(1+sin(x)−cos(x))
(8+8sin(x))2−64cos2(x)
Rewrite (8+8sin(x))2−64cos2(x) as (8+8sin(x))2−(8cos(x))2
(8+8sin(x))2−64cos2(x)
Rewrite 64 as 82=(8+8sin(x))2−82cos2(x)
Apply exponent rule: ambm=(ab)m82cos2(x)=(8cos(x))2=(8+8sin(x))2−(8cos(x))2
=(8+8sin(x))2−(8cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(8+8sin(x))2−(8cos(x))2=((8+8sin(x))+8cos(x))((8+8sin(x))−8cos(x))=((8+8sin(x))+8cos(x))((8+8sin(x))−8cos(x))
Refine=(8sin(x)+8cos(x)+8)(8sin(x)−8cos(x)+8)
Factor 8+8sin(x)+8cos(x):8(1+sin(x)+cos(x))
8+8sin(x)+8cos(x)
Factor out common term 8=8(1+sin(x)+cos(x))
=8(sin(x)+cos(x)+1)(8sin(x)−8cos(x)+8)
Factor 8+8sin(x)−8cos(x):8(1+sin(x)−cos(x))
8+8sin(x)−8cos(x)
Factor out common term 8=8(1+sin(x)−cos(x))
=8(1+sin(x)+cos(x))⋅8(1+sin(x)−cos(x))
Refine=64(1+sin(x)+cos(x))(1+sin(x)−cos(x))
64(1+sin(x)+cos(x))(1+sin(x)−cos(x))=0
Solving each part separately1+sin(x)+cos(x)=0or1+sin(x)−cos(x)=0
1+sin(x)+cos(x)=0:x=2πn+π,x=2πn+23π​
1+sin(x)+cos(x)=0
Rewrite using trig identities
1+sin(x)+cos(x)
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=1+2​sin(x+4π​)
1+2​sin(x+4π​)=0
Move 1to the right side
1+2​sin(x+4π​)=0
Subtract 1 from both sides1+2​sin(x+4π​)−1=0−1
Simplify2​sin(x+4π​)=−1
2​sin(x+4π​)=−1
Divide both sides by 2​
2​sin(x+4π​)=−1
Divide both sides by 2​2​2​sin(x+4π​)​=2​−1​
Simplify
2​2​sin(x+4π​)​=2​−1​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
General solutions for sin(x+4π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+4π​=45π​+2πn,x+4π​=47π​+2πn
x+4π​=45π​+2πn,x+4π​=47π​+2πn
Solve x+4π​=45π​+2πn:x=2πn+π
x+4π​=45π​+2πn
Move 4π​to the right side
x+4π​=45π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=45π​+2πn−4π​
Simplify
x+4π​−4π​=45π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 45π​+2πn−4π​:2πn+π
45π​+2πn−4π​
Group like terms=2πn−4π​+45π​
Combine the fractions −4π​+45π​:π
Apply rule ca​±cb​=ca±b​=4−π+5π​
Add similar elements: −π+5π=4π=44π​
Divide the numbers: 44​=1=π
=2πn+π
x=2πn+π
x=2πn+π
x=2πn+π
Solve x+4π​=47π​+2πn:x=2πn+23π​
x+4π​=47π​+2πn
Move 4π​to the right side
x+4π​=47π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=47π​+2πn−4π​
Simplify
x+4π​−4π​=47π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 47π​+2πn−4π​:2πn+23π​
47π​+2πn−4π​
Group like terms=2πn−4π​+47π​
Combine the fractions −4π​+47π​:23π​
Apply rule ca​±cb​=ca±b​=4−π+7π​
Add similar elements: −π+7π=6π=46π​
Cancel the common factor: 2=23π​
=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+π,x=2πn+23π​
1+sin(x)−cos(x)=0:x=2πn+23π​,x=2πn+2π
1+sin(x)−cos(x)=0
Rewrite using trig identities
1+sin(x)−cos(x)
sin(x)−cos(x)=2​sin(x−4π​)
sin(x)−cos(x)
Rewrite as=2​(2​1​sin(x)−2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)−sin(4π​)cos(x))
Use the Angle Sum identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=2​sin(x−4π​)
=1+2​sin(x−4π​)
1+2​sin(x−4π​)=0
Move 1to the right side
1+2​sin(x−4π​)=0
Subtract 1 from both sides1+2​sin(x−4π​)−1=0−1
Simplify2​sin(x−4π​)=−1
2​sin(x−4π​)=−1
Divide both sides by 2​
2​sin(x−4π​)=−1
Divide both sides by 2​2​2​sin(x−4π​)​=2​−1​
Simplify
2​2​sin(x−4π​)​=2​−1​
Simplify 2​2​sin(x−4π​)​:sin(x−4π​)
2​2​sin(x−4π​)​
Cancel the common factor: 2​=sin(x−4π​)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x−4π​)=−22​​
sin(x−4π​)=−22​​
sin(x−4π​)=−22​​
General solutions for sin(x−4π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x−4π​=45π​+2πn,x−4π​=47π​+2πn
x−4π​=45π​+2πn,x−4π​=47π​+2πn
Solve x−4π​=45π​+2πn:x=2πn+23π​
x−4π​=45π​+2πn
Move 4π​to the right side
x−4π​=45π​+2πn
Add 4π​ to both sidesx−4π​+4π​=45π​+2πn+4π​
Simplify
x−4π​+4π​=45π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 45π​+2πn+4π​:2πn+23π​
45π​+2πn+4π​
Group like terms=2πn+4π​+45π​
Combine the fractions 4π​+45π​:23π​
Apply rule ca​±cb​=ca±b​=4π+5π​
Add similar elements: π+5π=6π=46π​
Cancel the common factor: 2=23π​
=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+23π​
Solve x−4π​=47π​+2πn:x=2πn+2π
x−4π​=47π​+2πn
Move 4π​to the right side
x−4π​=47π​+2πn
Add 4π​ to both sidesx−4π​+4π​=47π​+2πn+4π​
Simplify
x−4π​+4π​=47π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 47π​+2πn+4π​:2πn+2π
47π​+2πn+4π​
Group like terms=2πn+4π​+47π​
Combine the fractions 4π​+47π​:2π
Apply rule ca​±cb​=ca±b​=4π+7π​
Add similar elements: π+7π=8π=48π​
Divide the numbers: 48​=2=2π
=2πn+2π
x=2πn+2π
x=2πn+2π
x=2πn+2π
x=2πn+23π​,x=2πn+2π
Combine all the solutionsx=2πn+π,x=2πn+23π​,x=2πn+2π
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 8sec(x)+8tan(x)=8
Remove the ones that don't agree with the equation.
Check the solution 2πn+π:False
2πn+π
Plug in n=12π1+π
For 8sec(x)+8tan(x)=8plug inx=2π1+π8sec(2π1+π)+8tan(2π1+π)=8
Refine−8=8
⇒False
Check the solution 2πn+23π​:False
2πn+23π​
Plug in n=12π1+23π​
For 8sec(x)+8tan(x)=8plug inx=2π1+23π​8sec(2π1+23π​)+8tan(2π1+23π​)=8
Undefined
⇒False
Check the solution 2πn+2π:True
2πn+2π
Plug in n=12π1+2π
For 8sec(x)+8tan(x)=8plug inx=2π1+2π8sec(2π1+2π)+8tan(2π1+2π)=8
Refine8=8
⇒True
x=2πn+2π

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(2x)=5cos^2(2x)solvefor x,y^n+25y=cos(5x)sin(1/x)=-1/2sin^2(x)+sin(x)=3sin^2(x)5-6cos(θ)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,8sec(x)+8tan(x)=8 ?

    The general solution for solvefor x,8sec(x)+8tan(x)=8 is x=2pin+2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024