Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8*sin^2(2x)-2*sin(2x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8⋅sin2(2x)−2⋅sin(2x)−1=0

Solution

x=12π​+πn,x=125π​+πn,x=−20.25268…​+πn,x=2π​+20.25268…​+πn
+1
Degrees
x=15∘+180∘n,x=75∘+180∘n,x=−7.23875…∘+180∘n,x=97.23875…∘+180∘n
Solution steps
8sin2(2x)−2sin(2x)−1=0
Solve by substitution
8sin2(2x)−2sin(2x)−1=0
Let: sin(2x)=u8u2−2u−1=0
8u2−2u−1=0:u=21​,u=−41​
8u2−2u−1=0
Solve with the quadratic formula
8u2−2u−1=0
Quadratic Equation Formula:
For a=8,b=−2,c=−1u1,2​=2⋅8−(−2)±(−2)2−4⋅8(−1)​​
u1,2​=2⋅8−(−2)±(−2)2−4⋅8(−1)​​
(−2)2−4⋅8(−1)​=6
(−2)2−4⋅8(−1)​
Apply rule −(−a)=a=(−2)2+4⋅8⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅8⋅1​
Multiply the numbers: 4⋅8⋅1=32=22+32​
22=4=4+32​
Add the numbers: 4+32=36=36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
u1,2​=2⋅8−(−2)±6​
Separate the solutionsu1​=2⋅8−(−2)+6​,u2​=2⋅8−(−2)−6​
u=2⋅8−(−2)+6​:21​
2⋅8−(−2)+6​
Apply rule −(−a)=a=2⋅82+6​
Add the numbers: 2+6=8=2⋅88​
Multiply the numbers: 2⋅8=16=168​
Cancel the common factor: 8=21​
u=2⋅8−(−2)−6​:−41​
2⋅8−(−2)−6​
Apply rule −(−a)=a=2⋅82−6​
Subtract the numbers: 2−6=−4=2⋅8−4​
Multiply the numbers: 2⋅8=16=16−4​
Apply the fraction rule: b−a​=−ba​=−164​
Cancel the common factor: 4=−41​
The solutions to the quadratic equation are:u=21​,u=−41​
Substitute back u=sin(2x)sin(2x)=21​,sin(2x)=−41​
sin(2x)=21​,sin(2x)=−41​
sin(2x)=21​:x=12π​+πn,x=125π​+πn
sin(2x)=21​
General solutions for sin(2x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=6π​+2πn,2x=65π​+2πn
2x=6π​+2πn,2x=65π​+2πn
Solve 2x=6π​+2πn:x=12π​+πn
2x=6π​+2πn
Divide both sides by 2
2x=6π​+2πn
Divide both sides by 222x​=26π​​+22πn​
Simplify
22x​=26π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 26π​​+22πn​:12π​+πn
26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=12π​+πn
x=12π​+πn
x=12π​+πn
x=12π​+πn
Solve 2x=65π​+2πn:x=125π​+πn
2x=65π​+2πn
Divide both sides by 2
2x=65π​+2πn
Divide both sides by 222x​=265π​​+22πn​
Simplify
22x​=265π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 265π​​+22πn​:125π​+πn
265π​​+22πn​
265π​​=125π​
265π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅25π​
Multiply the numbers: 6⋅2=12=125π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=125π​+πn
x=125π​+πn
x=125π​+πn
x=125π​+πn
x=12π​+πn,x=125π​+πn
sin(2x)=−41​:x=−2arcsin(41​)​+πn,x=2π​+2arcsin(41​)​+πn
sin(2x)=−41​
Apply trig inverse properties
sin(2x)=−41​
General solutions for sin(2x)=−41​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−41​)+2πn,2x=π+arcsin(41​)+2πn
2x=arcsin(−41​)+2πn,2x=π+arcsin(41​)+2πn
Solve 2x=arcsin(−41​)+2πn:x=−2arcsin(41​)​+πn
2x=arcsin(−41​)+2πn
Simplify arcsin(−41​)+2πn:−arcsin(41​)+2πn
arcsin(−41​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−41​)=−arcsin(41​)=−arcsin(41​)+2πn
2x=−arcsin(41​)+2πn
Divide both sides by 2
2x=−arcsin(41​)+2πn
Divide both sides by 222x​=−2arcsin(41​)​+22πn​
Simplifyx=−2arcsin(41​)​+πn
x=−2arcsin(41​)​+πn
Solve 2x=π+arcsin(41​)+2πn:x=2π​+2arcsin(41​)​+πn
2x=π+arcsin(41​)+2πn
Divide both sides by 2
2x=π+arcsin(41​)+2πn
Divide both sides by 222x​=2π​+2arcsin(41​)​+22πn​
Simplifyx=2π​+2arcsin(41​)​+πn
x=2π​+2arcsin(41​)​+πn
x=−2arcsin(41​)​+πn,x=2π​+2arcsin(41​)​+πn
Combine all the solutionsx=12π​+πn,x=125π​+πn,x=−2arcsin(41​)​+πn,x=2π​+2arcsin(41​)​+πn
Show solutions in decimal formx=12π​+πn,x=125π​+πn,x=−20.25268…​+πn,x=2π​+20.25268…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4-2cos(2x)=0solvefor x,2cos^2(x)+sin(x)=12cos^2(x)+6cos(x)=-18sin^2(x)-2cos(x)=522=18+8cos((x+9)/(12)pi)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024