Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-2cos(2x-pi/3)=2sin(2x-pi/6)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−2cos(2x−3π​)=2sin(2x−6π​)

Solution

x=πn,x=2π​+πn
+1
Degrees
x=0∘+180∘n,x=90∘+180∘n
Solution steps
−2cos(2x−3π​)=2sin(2x−6π​)
Rewrite using trig identities
−2cos(2x−3π​)=2sin(2x−6π​)
Rewrite using trig identities
cos(2x−3π​)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(2x)cos(3π​)+sin(2x)sin(3π​)
Simplify cos(2x)cos(3π​)+sin(2x)sin(3π​):21​cos(2x)+23​​sin(2x)
cos(2x)cos(3π​)+sin(2x)sin(3π​)
Simplify cos(3π​):21​
cos(3π​)
Use the following trivial identity:cos(3π​)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=21​cos(2x)+sin(3π​)sin(2x)
Simplify sin(3π​):23​​
sin(3π​)
Use the following trivial identity:sin(3π​)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=21​cos(2x)+23​​sin(2x)
=21​cos(2x)+23​​sin(2x)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(2x)cos(6π​)−cos(2x)sin(6π​)
Simplify sin(2x)cos(6π​)−cos(2x)sin(6π​):23​​sin(2x)−21​cos(2x)
sin(2x)cos(6π​)−cos(2x)sin(6π​)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​sin(2x)−sin(6π​)cos(2x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​sin(2x)−21​cos(2x)
=23​​sin(2x)−21​cos(2x)
−2(21​cos(2x)+23​​sin(2x))=2(23​​sin(2x)−21​cos(2x))
Simplify −2(21​cos(2x)+23​​sin(2x)):−cos(2x)−3​sin(2x)
−2(21​cos(2x)+23​​sin(2x))
Apply the distributive law: a(b+c)=ab+aca=−2,b=21​cos(2x),c=23​​sin(2x)=−2⋅21​cos(2x)+(−2)23​​sin(2x)
Apply minus-plus rules+(−a)=−a=−2⋅21​cos(2x)−2⋅23​​sin(2x)
Simplify −2⋅21​cos(2x)−2⋅23​​sin(2x):−cos(2x)−3​sin(2x)
−2⋅21​cos(2x)−2⋅23​​sin(2x)
2⋅21​cos(2x)=cos(2x)
2⋅21​cos(2x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​cos(2x)
Cancel the common factor: 2=cos(2x)⋅1
Multiply: cos(2x)⋅1=cos(2x)=cos(2x)
2⋅23​​sin(2x)=3​sin(2x)
2⋅23​​sin(2x)
Multiply fractions: a⋅cb​=ca⋅b​=223​​sin(2x)
Cancel the common factor: 2=sin(2x)3​
=−cos(2x)−3​sin(2x)
=−cos(2x)−3​sin(2x)
Simplify 2(23​​sin(2x)−21​cos(2x)):3​sin(2x)−cos(2x)
2(23​​sin(2x)−21​cos(2x))
Apply the distributive law: a(b−c)=ab−aca=2,b=23​​sin(2x),c=21​cos(2x)=2⋅23​​sin(2x)−2⋅21​cos(2x)
Simplify 2⋅23​​sin(2x)−2⋅21​cos(2x):3​sin(2x)−cos(2x)
2⋅23​​sin(2x)−2⋅21​cos(2x)
2⋅23​​sin(2x)=3​sin(2x)
2⋅23​​sin(2x)
Multiply fractions: a⋅cb​=ca⋅b​=223​​sin(2x)
Cancel the common factor: 2=sin(2x)3​
2⋅21​cos(2x)=cos(2x)
2⋅21​cos(2x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​cos(2x)
Cancel the common factor: 2=cos(2x)⋅1
Multiply: cos(2x)⋅1=cos(2x)=cos(2x)
=3​sin(2x)−cos(2x)
=3​sin(2x)−cos(2x)
−cos(2x)−3​sin(2x)=3​sin(2x)−cos(2x)
−cos(2x)−3​sin(2x)=3​sin(2x)−cos(2x)
Subtract 3​sin(2x)−cos(2x) from both sides−23​sin(2x)=0
Divide both sides by −23​
−23​sin(2x)=0
Divide both sides by −23​−23​−23​sin(2x)​=−23​0​
Simplifysin(2x)=0
sin(2x)=0
General solutions for sin(2x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=0+2πn,2x=π+2πn
2x=0+2πn,2x=π+2πn
Solve 2x=0+2πn:x=πn
2x=0+2πn
0+2πn=2πn2x=2πn
Divide both sides by 2
2x=2πn
Divide both sides by 222x​=22πn​
Simplifyx=πn
x=πn
Solve 2x=π+2πn:x=2π​+πn
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplifyx=2π​+πn
x=2π​+πn
x=πn,x=2π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=5sin(pi/4)sin((3pi)/4)cot(θ)=-12/52-2sqrt(3)tan(x+pi/3)=0(cos(x))^2=0tan(x)= 2/8

Frequently Asked Questions (FAQ)

  • What is the general solution for -2cos(2x-pi/3)=2sin(2x-pi/6) ?

    The general solution for -2cos(2x-pi/3)=2sin(2x-pi/6) is x=pin,x= pi/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024