Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,cos^2(3x+pi/4)= 3/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=32πn​−36π​,x=32πn​+3619π​,x=32πn​+367π​,x=32πn​+3611π​
+1
Degrees
x=−5∘+120∘n,x=95∘+120∘n,x=35∘+120∘n,x=55∘+120∘n
Solution steps
cos2(3x+4π​)=43​
Solve by substitution
cos2(3x+4π​)=43​
Let: cos(3x+4π​)=uu2=43​
u2=43​:u=23​​,u=−23​​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
Substitute back u=cos(3x+4π​)cos(3x+4π​)=23​​,cos(3x+4π​)=−23​​
cos(3x+4π​)=23​​,cos(3x+4π​)=−23​​
cos(3x+4π​)=23​​:x=32πn​−36π​,x=32πn​+3619π​
cos(3x+4π​)=23​​
General solutions for cos(3x+4π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3x+4π​=6π​+2πn,3x+4π​=611π​+2πn
3x+4π​=6π​+2πn,3x+4π​=611π​+2πn
Solve 3x+4π​=6π​+2πn:x=32πn​−36π​
3x+4π​=6π​+2πn
Move 4π​to the right side
3x+4π​=6π​+2πn
Subtract 4π​ from both sides3x+4π​−4π​=6π​+2πn−4π​
Simplify
3x+4π​−4π​=6π​+2πn−4π​
Simplify 3x+4π​−4π​:3x
3x+4π​−4π​
Add similar elements: 4π​−4π​=0
=3x
Simplify 6π​+2πn−4π​:2πn−12π​
6π​+2πn−4π​
Group like terms=2πn+6π​−4π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
=12π2​−12π3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π2−π3​
Add similar elements: 2π−3π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=2πn−12π​
3x=2πn−12π​
3x=2πn−12π​
3x=2πn−12π​
Divide both sides by 3
3x=2πn−12π​
Divide both sides by 333x​=32πn​−312π​​
Simplify
33x​=32πn​−312π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​−312π​​:32πn​−36π​
32πn​−312π​​
312π​​=36π​
312π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅3π​
Multiply the numbers: 12⋅3=36=36π​
=32πn​−36π​
x=32πn​−36π​
x=32πn​−36π​
x=32πn​−36π​
Solve 3x+4π​=611π​+2πn:x=32πn​+3619π​
3x+4π​=611π​+2πn
Move 4π​to the right side
3x+4π​=611π​+2πn
Subtract 4π​ from both sides3x+4π​−4π​=611π​+2πn−4π​
Simplify
3x+4π​−4π​=611π​+2πn−4π​
Simplify 3x+4π​−4π​:3x
3x+4π​−4π​
Add similar elements: 4π​−4π​=0
=3x
Simplify 611π​+2πn−4π​:2πn+1219π​
611π​+2πn−4π​
Group like terms=2πn−4π​+611π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 611π​:multiply the denominator and numerator by 2611π​=6⋅211π2​=1222π​
=−12π3​+1222π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+22π​
Add similar elements: −3π+22π=19π=2πn+1219π​
3x=2πn+1219π​
3x=2πn+1219π​
3x=2πn+1219π​
Divide both sides by 3
3x=2πn+1219π​
Divide both sides by 333x​=32πn​+31219π​​
Simplify
33x​=32πn​+31219π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​+31219π​​:32πn​+3619π​
32πn​+31219π​​
31219π​​=3619π​
31219π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅319π​
Multiply the numbers: 12⋅3=36=3619π​
=32πn​+3619π​
x=32πn​+3619π​
x=32πn​+3619π​
x=32πn​+3619π​
x=32πn​−36π​,x=32πn​+3619π​
cos(3x+4π​)=−23​​:x=32πn​+367π​,x=32πn​+3611π​
cos(3x+4π​)=−23​​
General solutions for cos(3x+4π​)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3x+4π​=65π​+2πn,3x+4π​=67π​+2πn
3x+4π​=65π​+2πn,3x+4π​=67π​+2πn
Solve 3x+4π​=65π​+2πn:x=32πn​+367π​
3x+4π​=65π​+2πn
Move 4π​to the right side
3x+4π​=65π​+2πn
Subtract 4π​ from both sides3x+4π​−4π​=65π​+2πn−4π​
Simplify
3x+4π​−4π​=65π​+2πn−4π​
Simplify 3x+4π​−4π​:3x
3x+4π​−4π​
Add similar elements: 4π​−4π​=0
=3x
Simplify 65π​+2πn−4π​:2πn+127π​
65π​+2πn−4π​
Group like terms=2πn−4π​+65π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 65π​:multiply the denominator and numerator by 265π​=6⋅25π2​=1210π​
=−12π3​+1210π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+10π​
Add similar elements: −3π+10π=7π=2πn+127π​
3x=2πn+127π​
3x=2πn+127π​
3x=2πn+127π​
Divide both sides by 3
3x=2πn+127π​
Divide both sides by 333x​=32πn​+3127π​​
Simplify
33x​=32πn​+3127π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​+3127π​​:32πn​+367π​
32πn​+3127π​​
3127π​​=367π​
3127π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅37π​
Multiply the numbers: 12⋅3=36=367π​
=32πn​+367π​
x=32πn​+367π​
x=32πn​+367π​
x=32πn​+367π​
Solve 3x+4π​=67π​+2πn:x=32πn​+3611π​
3x+4π​=67π​+2πn
Move 4π​to the right side
3x+4π​=67π​+2πn
Subtract 4π​ from both sides3x+4π​−4π​=67π​+2πn−4π​
Simplify
3x+4π​−4π​=67π​+2πn−4π​
Simplify 3x+4π​−4π​:3x
3x+4π​−4π​
Add similar elements: 4π​−4π​=0
=3x
Simplify 67π​+2πn−4π​:2πn+1211π​
67π​+2πn−4π​
Group like terms=2πn−4π​+67π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 67π​:multiply the denominator and numerator by 267π​=6⋅27π2​=1214π​
=−12π3​+1214π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+14π​
Add similar elements: −3π+14π=11π=2πn+1211π​
3x=2πn+1211π​
3x=2πn+1211π​
3x=2πn+1211π​
Divide both sides by 3
3x=2πn+1211π​
Divide both sides by 333x​=32πn​+31211π​​
Simplify
33x​=32πn​+31211π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​+31211π​​:32πn​+3611π​
32πn​+31211π​​
31211π​​=3611π​
31211π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅311π​
Multiply the numbers: 12⋅3=36=3611π​
=32πn​+3611π​
x=32πn​+3611π​
x=32πn​+3611π​
x=32πn​+3611π​
x=32πn​+367π​,x=32πn​+3611π​
Combine all the solutionsx=32πn​−36π​,x=32πn​+3619π​,x=32πn​+367π​,x=32πn​+3611π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(tan(x^2+6)-1)/(tan(x))=0tan(θ)= 8/(-8)4cos^2(x)+4sin(x)=5sin(θ)cot(θ)=(sqrt(3))/2cos^2(θ)+(10^2)/(9.81(1))cos(θ)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024