Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc^2(x)=(1/(cos(x)))^2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc2(x)=(cos(x)1​)2

Solution

x=43π​+πn,x=4π​+πn
+1
Degrees
x=135∘+180∘n,x=45∘+180∘n
Solution steps
csc2(x)=(cos(x)1​)2
Subtract (cos(x)1​)2 from both sidescsc2(x)−cos2(x)1​=0
Simplify csc2(x)−cos2(x)1​:cos2(x)csc2(x)cos2(x)−1​
csc2(x)−cos2(x)1​
Convert element to fraction: csc2(x)=cos2(x)csc2(x)cos2(x)​=cos2(x)csc2(x)cos2(x)​−cos2(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)csc2(x)cos2(x)−1​
cos2(x)csc2(x)cos2(x)−1​=0
g(x)f(x)​=0⇒f(x)=0csc2(x)cos2(x)−1=0
Factor csc2(x)cos2(x)−1:(cos(x)csc(x)+1)(cos(x)csc(x)−1)
csc2(x)cos2(x)−1
Apply exponent rule: ambm=(ab)mcos2(x)csc2(x)=(cos(x)csc(x))2=(cos(x)csc(x))2−1
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(cos(x)csc(x))2−1=(cos(x)csc(x)+1)(cos(x)csc(x)−1)=(cos(x)csc(x)+1)(cos(x)csc(x)−1)
(cos(x)csc(x)+1)(cos(x)csc(x)−1)=0
Solving each part separatelycos(x)csc(x)+1=0orcos(x)csc(x)−1=0
cos(x)csc(x)+1=0:x=43π​+πn
cos(x)csc(x)+1=0
Rewrite using trig identities
cos(x)csc(x)+1
csc(x)cos(x)=cot(x)
csc(x)cos(x)
Express with sin, cos
csc(x)cos(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​cos(x)
Simplify sin(x)1​cos(x):sin(x)cos(x)​
sin(x)1​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1cos(x)​
Multiply: 1⋅cos(x)=cos(x)=sin(x)cos(x)​
=sin(x)cos(x)​
=sin(x)cos(x)​
Use the basic trigonometric identity: sin(x)cos(x)​=cot(x)=cot(x)
=1+cot(x)
1+cot(x)=0
Move 1to the right side
1+cot(x)=0
Subtract 1 from both sides1+cot(x)−1=0−1
Simplifycot(x)=−1
cot(x)=−1
General solutions for cot(x)=−1
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
x=43π​+πn
x=43π​+πn
cos(x)csc(x)−1=0:x=4π​+πn
cos(x)csc(x)−1=0
Rewrite using trig identities
cos(x)csc(x)−1
csc(x)cos(x)=cot(x)
csc(x)cos(x)
Express with sin, cos
csc(x)cos(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​cos(x)
Simplify sin(x)1​cos(x):sin(x)cos(x)​
sin(x)1​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)1cos(x)​
Multiply: 1⋅cos(x)=cos(x)=sin(x)cos(x)​
=sin(x)cos(x)​
=sin(x)cos(x)​
Use the basic trigonometric identity: sin(x)cos(x)​=cot(x)=cot(x)
=−1+cot(x)
−1+cot(x)=0
Move 1to the right side
−1+cot(x)=0
Add 1 to both sides−1+cot(x)+1=0+1
Simplifycot(x)=1
cot(x)=1
General solutions for cot(x)=1
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=43π​+πn,x=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-2cos^2(x)+3cos(x)=12-10sec(x)=4-9sec(x)7=e^{2sin(x)}+3sin(u)=-0.9-3/2 =-1/2 sec(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for csc^2(x)=(1/(cos(x)))^2 ?

    The general solution for csc^2(x)=(1/(cos(x)))^2 is x=(3pi)/4+pin,x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024