Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)sin^2(x)=sin(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)sin2(x)=sin(2x)

Solution

x=2πn,x=π+2πn,x=−0.95531…+πn,x=0.95531…+πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=−54.73561…∘+180∘n,x=54.73561…∘+180∘n
Solution steps
tan(x)sin2(x)=sin(2x)
Subtract sin(2x) from both sidessin2(x)tan(x)−sin(2x)=0
Rewrite using trig identities
−sin(2x)+sin2(x)tan(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−2sin(x)cos(x)+sin2(x)tan(x)
sin2(x)tan(x)−2cos(x)sin(x)=0
Factor sin2(x)tan(x)−2cos(x)sin(x):sin(x)(sin(x)tan(x)−2cos(x))
sin2(x)tan(x)−2cos(x)sin(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=sin(x)sin(x)tan(x)−2cos(x)sin(x)
Factor out common term sin(x)=sin(x)(sin(x)tan(x)−2cos(x))
sin(x)(sin(x)tan(x)−2cos(x))=0
Solving each part separatelysin(x)=0orsin(x)tan(x)−2cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)tan(x)−2cos(x)=0:x=arctan(−2​)+πn,x=arctan(2​)+πn
sin(x)tan(x)−2cos(x)=0
Express with sin, cos
−2cos(x)+sin(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−2cos(x)+sin(x)cos(x)sin(x)​
Simplify −2cos(x)+sin(x)cos(x)sin(x)​:cos(x)−2cos2(x)+sin2(x)​
−2cos(x)+sin(x)cos(x)sin(x)​
sin(x)cos(x)sin(x)​=cos(x)sin2(x)​
sin(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)sin(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=cos(x)sin2(x)​
=−2cos(x)+cos(x)sin2(x)​
Convert element to fraction: 2cos(x)=cos(x)2cos(x)cos(x)​=−cos(x)2cos(x)cos(x)​+cos(x)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−2cos(x)cos(x)+sin2(x)​
−2cos(x)cos(x)+sin2(x)=−2cos2(x)+sin2(x)
−2cos(x)cos(x)+sin2(x)
2cos(x)cos(x)=2cos2(x)
2cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2cos1+1(x)
Add the numbers: 1+1=2=2cos2(x)
=−2cos2(x)+sin2(x)
=cos(x)−2cos2(x)+sin2(x)​
=cos(x)−2cos2(x)+sin2(x)​
cos(x)sin2(x)−2cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0sin2(x)−2cos2(x)=0
Factor sin2(x)−2cos2(x):(sin(x)+2​cos(x))(sin(x)−2​cos(x))
sin2(x)−2cos2(x)
Rewrite sin2(x)−2cos2(x) as sin2(x)−(2​cos(x))2
sin2(x)−2cos2(x)
Apply radical rule: a=(a​)22=(2​)2=sin2(x)−(2​)2cos2(x)
Apply exponent rule: ambm=(ab)m(2​)2cos2(x)=(2​cos(x))2=sin2(x)−(2​cos(x))2
=sin2(x)−(2​cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(x)−(2​cos(x))2=(sin(x)+2​cos(x))(sin(x)−2​cos(x))=(sin(x)+2​cos(x))(sin(x)−2​cos(x))
(sin(x)+2​cos(x))(sin(x)−2​cos(x))=0
Solving each part separatelysin(x)+2​cos(x)=0orsin(x)−2​cos(x)=0
sin(x)+2​cos(x)=0:x=arctan(−2​)+πn
sin(x)+2​cos(x)=0
Rewrite using trig identities
sin(x)+2​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)+2​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​+2​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)+2​=0
tan(x)+2​=0
Move 2​to the right side
tan(x)+2​=0
Subtract 2​ from both sidestan(x)+2​−2​=0−2​
Simplifytan(x)=−2​
tan(x)=−2​
Apply trig inverse properties
tan(x)=−2​
General solutions for tan(x)=−2​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−2​)+πn
x=arctan(−2​)+πn
sin(x)−2​cos(x)=0:x=arctan(2​)+πn
sin(x)−2​cos(x)=0
Rewrite using trig identities
sin(x)−2​cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−2​cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−2​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−2​=0
tan(x)−2​=0
Move 2​to the right side
tan(x)−2​=0
Add 2​ to both sidestan(x)−2​+2​=0+2​
Simplifytan(x)=2​
tan(x)=2​
Apply trig inverse properties
tan(x)=2​
General solutions for tan(x)=2​tan(x)=a⇒x=arctan(a)+πnx=arctan(2​)+πn
x=arctan(2​)+πn
Combine all the solutionsx=arctan(−2​)+πn,x=arctan(2​)+πn
Combine all the solutionsx=2πn,x=π+2πn,x=arctan(−2​)+πn,x=arctan(2​)+πn
Show solutions in decimal formx=2πn,x=π+2πn,x=−0.95531…+πn,x=0.95531…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6-9sin(θ)-4cos^2(θ)=02cos^2(x)-1cos(x)=0sec(x)=-1.5sin(x)+2=-csc(x)cos(a)= 9/14

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)sin^2(x)=sin(2x) ?

    The general solution for tan(x)sin^2(x)=sin(2x) is x=2pin,x=pi+2pin,x=-0.95531…+pin,x=0.95531…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024