Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6-9sin(θ)-4cos^2(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6−9sin(θ)−4cos2(θ)=0

Solution

θ=0.25268…+2πn,θ=π−0.25268…+2πn
+1
Degrees
θ=14.47751…∘+360∘n,θ=165.52248…∘+360∘n
Solution steps
6−9sin(θ)−4cos2(θ)=0
Rewrite using trig identities
6−4cos2(θ)−9sin(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=6−4(1−sin2(θ))−9sin(θ)
Simplify 6−4(1−sin2(θ))−9sin(θ):4sin2(θ)−9sin(θ)+2
6−4(1−sin2(θ))−9sin(θ)
Expand −4(1−sin2(θ)):−4+4sin2(θ)
−4(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=sin2(θ)=−4⋅1−(−4)sin2(θ)
Apply minus-plus rules−(−a)=a=−4⋅1+4sin2(θ)
Multiply the numbers: 4⋅1=4=−4+4sin2(θ)
=6−4+4sin2(θ)−9sin(θ)
Subtract the numbers: 6−4=2=4sin2(θ)−9sin(θ)+2
=4sin2(θ)−9sin(θ)+2
2+4sin2(θ)−9sin(θ)=0
Solve by substitution
2+4sin2(θ)−9sin(θ)=0
Let: sin(θ)=u2+4u2−9u=0
2+4u2−9u=0:u=2,u=41​
2+4u2−9u=0
Write in the standard form ax2+bx+c=04u2−9u+2=0
Solve with the quadratic formula
4u2−9u+2=0
Quadratic Equation Formula:
For a=4,b=−9,c=2u1,2​=2⋅4−(−9)±(−9)2−4⋅4⋅2​​
u1,2​=2⋅4−(−9)±(−9)2−4⋅4⋅2​​
(−9)2−4⋅4⋅2​=7
(−9)2−4⋅4⋅2​
Apply exponent rule: (−a)n=an,if n is even(−9)2=92=92−4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=92−32​
92=81=81−32​
Subtract the numbers: 81−32=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
u1,2​=2⋅4−(−9)±7​
Separate the solutionsu1​=2⋅4−(−9)+7​,u2​=2⋅4−(−9)−7​
u=2⋅4−(−9)+7​:2
2⋅4−(−9)+7​
Apply rule −(−a)=a=2⋅49+7​
Add the numbers: 9+7=16=2⋅416​
Multiply the numbers: 2⋅4=8=816​
Divide the numbers: 816​=2=2
u=2⋅4−(−9)−7​:41​
2⋅4−(−9)−7​
Apply rule −(−a)=a=2⋅49−7​
Subtract the numbers: 9−7=2=2⋅42​
Multiply the numbers: 2⋅4=8=82​
Cancel the common factor: 2=41​
The solutions to the quadratic equation are:u=2,u=41​
Substitute back u=sin(θ)sin(θ)=2,sin(θ)=41​
sin(θ)=2,sin(θ)=41​
sin(θ)=2:No Solution
sin(θ)=2
−1≤sin(x)≤1NoSolution
sin(θ)=41​:θ=arcsin(41​)+2πn,θ=π−arcsin(41​)+2πn
sin(θ)=41​
Apply trig inverse properties
sin(θ)=41​
General solutions for sin(θ)=41​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(41​)+2πn,θ=π−arcsin(41​)+2πn
θ=arcsin(41​)+2πn,θ=π−arcsin(41​)+2πn
Combine all the solutionsθ=arcsin(41​)+2πn,θ=π−arcsin(41​)+2πn
Show solutions in decimal formθ=0.25268…+2πn,θ=π−0.25268…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)-1cos(x)=0sec(x)=-1.5sin(x)+2=-csc(x)cos(a)= 9/14pi/2 =2sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6-9sin(θ)-4cos^2(θ)=0 ?

    The general solution for 6-9sin(θ)-4cos^2(θ)=0 is θ=0.25268…+2pin,θ=pi-0.25268…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024