Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

45=57.7+arctan((3.5)/x)-arctan((175)/x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

45∘=57.7∘+arctan(x3.5​)−arctan(x175​)

Solution

x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
Solution steps
45∘=57.7∘+arctan(x3.5​)−arctan(x175​)
Switch sides57.7∘+arctan(x3.5​)−arctan(x175​)=45∘
Rewrite using trig identities
57.7∘+arctan(x3.5​)−arctan(x175​)
Use the Sum to Product identity: arctan(s)−arctan(t)=arctan(1+sts−t​)=57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)
57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)=45∘
Move 57.7∘to the right side
57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)=45∘
Subtract 57.7∘ from both sides57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)−57.7∘=45∘−57.7∘
Simplify
57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)−57.7∘=45∘−57.7∘
Simplify 57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)−57.7∘:arctan(1+x3.5​⋅x175​x3.5​−x175​​)
57.7∘+arctan(1+x3.5​⋅x175​x3.5​−x175​​)−57.7∘
Add similar elements: 57.7∘−57.7∘=0
=arctan(1+x3.5​⋅x175​x3.5​−x175​​)
Simplify 45∘−57.7∘:−12.7∘
45∘−57.7∘
Least Common Multiplier of 4,1800:1800
4,1800
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 1800:2⋅2⋅2⋅3⋅3⋅5⋅5
1800
1800divides by 21800=900⋅2=2⋅900
900divides by 2900=450⋅2=2⋅2⋅450
450divides by 2450=225⋅2=2⋅2⋅2⋅225
225divides by 3225=75⋅3=2⋅2⋅2⋅3⋅75
75divides by 375=25⋅3=2⋅2⋅2⋅3⋅3⋅25
25divides by 525=5⋅5=2⋅2⋅2⋅3⋅3⋅5⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3⋅5⋅5
Multiply each factor the greatest number of times it occurs in either 4 or 1800=2⋅2⋅2⋅3⋅3⋅5⋅5
Multiply the numbers: 2⋅2⋅2⋅3⋅3⋅5⋅5=1800=1800
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 1800
For 45∘:multiply the denominator and numerator by 45045∘=4⋅450180∘450​=45∘
=45∘−57.7∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1800180∘450−103860∘​
Add similar elements: 81000∘−103860∘=−22860∘=1800−22860∘​
Apply the fraction rule: b−a​=−ba​=−12.7∘
arctan(1+x3.5​⋅x175​x3.5​−x175​​)=−12.7∘
arctan(1+x3.5​⋅x175​x3.5​−x175​​)=−12.7∘
arctan(1+x3.5​⋅x175​x3.5​−x175​​)=−12.7∘
Apply trig inverse properties
arctan(1+x3.5​⋅x175​x3.5​−x175​​)=−12.7∘
arctan(x)=a⇒x=tan(a)1+x3.5​⋅x175​x3.5​−x175​​=tan(−12.7∘)
tan(−12.7∘)=−tan(12.7∘)
tan(−12.7∘)
Use the following property: tan(−x)=−tan(x)tan(−12.7∘)=−tan(12.7∘)=−tan(12.7∘)
1+x3.5​⋅x175​x3.5​−x175​​=−tan(12.7∘)
1+x3.5​⋅x175​x3.5​−x175​​=−tan(12.7∘)
Solve 1+x3.5​⋅x175​x3.5​−x175​​=−tan(12.7∘):x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
1+x3.5​⋅x175​x3.5​−x175​​=−tan(12.7∘)
Simplify 1+x3.5​⋅x175​x3.5​−x175​​:−x2+612.5171.5x​
1+x3.5​⋅x175​x3.5​−x175​​
Combine the fractions x3.5​−x175​:−x171.5​
Apply rule ca​±cb​=ca±b​=x3.5−175​
Subtract the numbers: 3.5−175=−171.5=x−171.5​
Apply the fraction rule: b−a​=−ba​=−x171.5​
=1+x3.5​⋅x175​−x171.5​​
Apply the fraction rule: b−a​=−ba​=−1+x3.5​⋅x175​x171.5​​
Apply the fraction rule: acb​​=c⋅ab​1+x3.5​⋅x175​x171.5​​=x(1+x3.5​⋅x175​)171.5​=−x(1+x3.5​⋅x175​)171.5​
x3.5​⋅x175​=x2612.5​
x3.5​⋅x175​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=xx3.5⋅175​
Multiply the numbers: 3.5⋅175=612.5=xx612.5​
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=x2612.5​
=−x(x2612.5​+1)171.5​
Join 1+x2612.5​:x2x2+612.5​
1+x2612.5​
Convert element to fraction: 1=x21x2​=x21⋅x2​+x2612.5​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=x21⋅x2+612.5​
Multiply: 1⋅x2=x2=x2x2+612.5​
=−x2x2+612.5​x171.5​
Multiply xx2x2+612.5​:xx2+612.5​
xx2x2+612.5​
Multiply fractions: a⋅cb​=ca⋅b​=x2(x2+612.5)x​
Cancel the common factor: x=xx2+612.5​
=−xx2+612.5​171.5​
Apply the fraction rule: cb​a​=ba⋅c​=−x2+612.5171.5x​
−x2+612.5171.5x​=−tan(12.7∘)
Multiply both sides by x2+612.5
−x2+612.5171.5x​=−tan(12.7∘)
Multiply both sides by x2+612.5−x2+612.5171.5x​(x2+612.5)=−tan(12.7∘)(x2+612.5)
Simplify−171.5x=−tan(12.7∘)(x2+612.5)
−171.5x=−tan(12.7∘)(x2+612.5)
Solve −171.5x=−tan(12.7∘)(x2+612.5):x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
−171.5x=−tan(12.7∘)(x2+612.5)
Expand −tan(12.7∘)(x2+612.5):−tan(12.7∘)x2−612.5tan(12.7∘)
−tan(12.7∘)(x2+612.5)
Apply the distributive law: a(b+c)=ab+aca=−tan(12.7∘),b=x2,c=612.5=−tan(12.7∘)x2+(−tan(12.7∘))⋅612.5
Apply minus-plus rules+(−a)=−a=−tan(12.7∘)x2−612.5tan(12.7∘)
−171.5x=−tan(12.7∘)x2−612.5tan(12.7∘)
Switch sides−tan(12.7∘)x2−612.5tan(12.7∘)=−171.5x
Move 171.5xto the left side
−tan(12.7∘)x2−612.5tan(12.7∘)=−171.5x
Add 171.5x to both sides−tan(12.7∘)x2−612.5tan(12.7∘)+171.5x=−171.5x+171.5x
Simplify−tan(12.7∘)x2−612.5tan(12.7∘)+171.5x=0
−tan(12.7∘)x2−612.5tan(12.7∘)+171.5x=0
Write in the standard form ax2+bx+c=0−0.22535…x2+171.5x−138.03283…=0
Solve with the quadratic formula
−0.22535…x2+171.5x−138.03283…=0
Quadratic Equation Formula:
For a=−0.22535…,b=171.5,c=−138.03283…x1,2​=2(−0.22535…)−171.5±171.52−4(−0.22535…)(−138.03283…)​​
x1,2​=2(−0.22535…)−171.5±171.52−4(−0.22535…)(−138.03283…)​​
171.52−4(−0.22535…)(−138.03283…)​=29287.82182…​
171.52−4(−0.22535…)(−138.03283…)​
Apply rule −(−a)=a=171.52−4⋅0.22535…⋅138.03283…​
Multiply the numbers: 4⋅0.22535…⋅138.03283…=124.42817…=171.52−124.42817…​
171.52=29412.25=29412.25−124.42817…​
Subtract the numbers: 29412.25−124.42817…=29287.82182…=29287.82182…​
x1,2​=2(−0.22535…)−171.5±29287.82182…​​
Separate the solutionsx1​=2(−0.22535…)−171.5+29287.82182…​​,x2​=2(−0.22535…)−171.5−29287.82182…​​
x=2(−0.22535…)−171.5+29287.82182…​​:0.45071…171.5−29287.82182…​​
2(−0.22535…)−171.5+29287.82182…​​
Remove parentheses: (−a)=−a=−2⋅0.22535…−171.5+29287.82182…​​
Multiply the numbers: 2⋅0.22535…=0.45071…=−0.45071…−171.5+29287.82182…​​
Apply the fraction rule: −b−a​=ba​−171.5+29287.82182…​=−(171.5−29287.82182…​)=0.45071…171.5−29287.82182…​​
x=2(−0.22535…)−171.5−29287.82182…​​:0.45071…171.5+29287.82182…​​
2(−0.22535…)−171.5−29287.82182…​​
Remove parentheses: (−a)=−a=−2⋅0.22535…−171.5−29287.82182…​​
Multiply the numbers: 2⋅0.22535…=0.45071…=−0.45071…−171.5−29287.82182…​​
Apply the fraction rule: −b−a​=ba​−171.5−29287.82182…​=−(171.5+29287.82182…​)=0.45071…171.5+29287.82182…​​
The solutions to the quadratic equation are:x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
Verify Solutions
Find undefined (singularity) points:x=0
Take the denominator(s) of 1+x3.5​⋅x175​x3.5​−x175​​ and compare to zero
x=0
The following points are undefinedx=0
Combine undefined points with solutions:
x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 57.7∘+arctan(x3.5​)−arctan(x175​)=45∘
Remove the ones that don't agree with the equation.
Check the solution 0.45071…171.5−29287.82182…​​:True
0.45071…171.5−29287.82182…​​
Plug in n=10.45071…171.5−29287.82182…​​
For 57.7∘+arctan(x3.5​)−arctan(x175​)=45∘plug inx=0.45071…171.5−29287.82182…​​57.7∘+arctan(0.45071…171.5−29287.82182…​​3.5​)−arctan(0.45071…171.5−29287.82182…​​175​)=45∘
Refine0.78539…=0.78539…
⇒True
Check the solution 0.45071…171.5+29287.82182…​​:True
0.45071…171.5+29287.82182…​​
Plug in n=10.45071…171.5+29287.82182…​​
For 57.7∘+arctan(x3.5​)−arctan(x175​)=45∘plug inx=0.45071…171.5+29287.82182…​​57.7∘+arctan(0.45071…171.5+29287.82182…​​3.5​)−arctan(0.45071…171.5+29287.82182…​​175​)=45∘
Refine0.78539…=0.78539…
⇒True
x=0.45071…171.5−29287.82182…​​,x=0.45071…171.5+29287.82182…​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/2-cos(x/2)=0tan(θ)=(2pi)/32sin(5x)=1cos(2x)=-17/81sin^2(θ)+cos(2θ)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024