Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(8)cos(θ)+7=-6cos(θ)+sqrt(5)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8​cos(θ)+7=−6cos(θ)+5​

Solution

θ=2.14077…+2πn,θ=−2.14077…+2πn
+1
Degrees
θ=122.65728…∘+360∘n,θ=−122.65728…∘+360∘n
Solution steps
8​cos(θ)+7=−6cos(θ)+5​
Solve by substitution
8​cos(θ)+7=−6cos(θ)+5​
Let: cos(θ)=u8​u+7=−6u+5​
8​u+7=−6u+5​:u=14(5​−7)(3−2​)​
8​u+7=−6u+5​
Simplify 8​u+7:22​u+7
8​u+7
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​u+7
22​u+7=−6u+5​
Move 7to the right side
22​u+7=−6u+5​
Subtract 7 from both sides22​u+7−7=−6u+5​−7
Simplify22​u=−6u+5​−7
22​u=−6u+5​−7
Move 6uto the left side
22​u=−6u+5​−7
Add 6u to both sides22​u+6u=−6u+5​−7+6u
Simplify22​u+6u=5​−7
22​u+6u=5​−7
Factor 22​u+6u:2(2​+3)u
22​u+6u
Rewrite as=2u2​+3⋅2u
Factor out common term 2u=2u(2​+3)
2(2​+3)u=5​−7
Divide both sides by 2(2​+3)
2(2​+3)u=5​−7
Divide both sides by 2(2​+3)2(2​+3)2(2​+3)u​=2(2​+3)5​​−2(2​+3)7​
Simplify
2(2​+3)2(2​+3)u​=2(2​+3)5​​−2(2​+3)7​
Simplify 2(2​+3)2(2​+3)u​:u
2(2​+3)2(2​+3)u​
Divide the numbers: 22​=1=(2​+3)(3+2​)u​
Cancel the common factor: 2​+3=u
Simplify 2(2​+3)5​​−2(2​+3)7​:14(5​−7)(3−2​)​
2(2​+3)5​​−2(2​+3)7​
Apply rule ca​±cb​=ca±b​=2(3+2​)5​−7​
Multiply by the conjugate 3−2​3−2​​=2(3+2​)(3−2​)(5​−7)(3−2​)​
2(3+2​)(3−2​)=14
2(3+2​)(3−2​)
Expand (3+2​)(3−2​):7
(3+2​)(3−2​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3,b=2​=32−(2​)2
Simplify 32−(2​)2:7
32−(2​)2
32=9
32
32=9=9
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=9−2
Subtract the numbers: 9−2=7=7
=7
=2⋅7
Expand 2⋅7:14
2⋅7
Distribute parentheses=2⋅7
Multiply the numbers: 2⋅7=14=14
=14
=14(5​−7)(3−2​)​
u=14(5​−7)(3−2​)​
u=14(5​−7)(3−2​)​
u=14(5​−7)(3−2​)​
Substitute back u=cos(θ)cos(θ)=14(5​−7)(3−2​)​
cos(θ)=14(5​−7)(3−2​)​
cos(θ)=14(5​−7)(3−2​)​:θ=arccos(14(5​−7)(3−2​)​)+2πn,θ=−arccos(14(5​−7)(3−2​)​)+2πn
cos(θ)=14(5​−7)(3−2​)​
Apply trig inverse properties
cos(θ)=14(5​−7)(3−2​)​
General solutions for cos(θ)=14(5​−7)(3−2​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(14(5​−7)(3−2​)​)+2πn,θ=−arccos(14(5​−7)(3−2​)​)+2πn
θ=arccos(14(5​−7)(3−2​)​)+2πn,θ=−arccos(14(5​−7)(3−2​)​)+2πn
Combine all the solutionsθ=arccos(14(5​−7)(3−2​)​)+2πn,θ=−arccos(14(5​−7)(3−2​)​)+2πn
Show solutions in decimal formθ=2.14077…+2πn,θ=−2.14077…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin(θ)+15cos(θ)=17cos(x-1)=02sin(t)+3cos(t)=0tan(θ)=(-11/3-(-4/3))/(1+(-4/3)(-11/3))csc(2x)=2,x0<x<360

Frequently Asked Questions (FAQ)

  • What is the general solution for sqrt(8)cos(θ)+7=-6cos(θ)+sqrt(5) ?

    The general solution for sqrt(8)cos(θ)+7=-6cos(θ)+sqrt(5) is θ=2.14077…+2pin,θ=-2.14077…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024