Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2a)cot(a+20)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2a)cot(a+20∘)=1

Solution

a=360∘n+20∘,a=200∘+360∘n
+1
Radians
a=9π​+2πn,a=910π​+2πn
Solution steps
tan(2a)cot(a+20∘)=1
Subtract 1 from both sidestan(2a)cot(a+20∘)−1=0
Express with sin, cos
−1+cot(20∘+a)tan(2a)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1+sin(20∘+a)cos(20∘+a)​tan(2a)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+sin(20∘+a)cos(20∘+a)​⋅cos(2a)sin(2a)​
Simplify −1+sin(20∘+a)cos(20∘+a)​⋅cos(2a)sin(2a)​:sin(9180∘+9a​)cos(2a)−sin(9180∘+9a​)cos(2a)+cos(9180∘+9a​)sin(2a)​
−1+sin(20∘+a)cos(20∘+a)​⋅cos(2a)sin(2a)​
sin(20∘+a)cos(20∘+a)​⋅cos(2a)sin(2a)​=sin(9180∘+9a​)cos(2a)cos(9180∘+9a​)sin(2a)​
sin(20∘+a)cos(20∘+a)​⋅cos(2a)sin(2a)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(20∘+a)cos(2a)cos(20∘+a)sin(2a)​
Join 20∘+a:9180∘+9a​
20∘+a
Convert element to fraction: a=9a9​=20∘+9a⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9180∘+a⋅9​
=sin(99a+180∘​)cos(2a)cos(a+20∘)sin(2a)​
Join 20∘+a:9180∘+9a​
20∘+a
Convert element to fraction: a=9a9​=20∘+9a⋅9​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9180∘+a⋅9​
=sin(99a+180∘​)cos(2a)cos(99a+180∘​)sin(2a)​
=−1+sin(99a+180∘​)cos(2a)cos(99a+180∘​)sin(2a)​
Convert element to fraction: 1=sin(9180∘+a9​)cos(2a)1sin(9180∘+a9​)cos(2a)​=−sin(9180∘+a⋅9​)cos(2a)1⋅sin(9180∘+a⋅9​)cos(2a)​+sin(9180∘+a⋅9​)cos(2a)cos(9180∘+a⋅9​)sin(2a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(9180∘+a⋅9​)cos(2a)−1⋅sin(9180∘+a⋅9​)cos(2a)+cos(9180∘+a⋅9​)sin(2a)​
Multiply: 1⋅sin(9180∘+a⋅9​)=sin(9180∘+a⋅9​)=sin(99a+180∘​)cos(2a)−sin(99a+180∘​)cos(2a)+cos(99a+180∘​)sin(2a)​
=sin(9180∘+9a​)cos(2a)−sin(9180∘+9a​)cos(2a)+cos(9180∘+9a​)sin(2a)​
cos(2a)sin(9180∘+9a​)−cos(2a)sin(9180∘+9a​)+cos(9180∘+9a​)sin(2a)​=0
g(x)f(x)​=0⇒f(x)=0−cos(2a)sin(9180∘+9a​)+cos(9180∘+9a​)sin(2a)=0
Rewrite using trig identities
−cos(2a)sin(9180∘+9a​)+cos(9180∘+9a​)sin(2a)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(2a−9180∘+9a​)
sin(2a−9180∘+9a​)=0
General solutions for sin(2a−9180∘+9a​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2a−9180∘+9a​=0+360∘n,2a−9180∘+9a​=180∘+360∘n
2a−9180∘+9a​=0+360∘n,2a−9180∘+9a​=180∘+360∘n
Solve 2a−9180∘+9a​=0+360∘n:a=360∘n+20∘
2a−9180∘+9a​=0+360∘n
0+360∘n=360∘n2a−9180∘+9a​=360∘n
Multiply both sides by 9
2a−9180∘+9a​=360∘n
Multiply both sides by 92a⋅9−9180∘+9a​⋅9=360∘n⋅9
Simplify
2a⋅9−9180∘+9a​⋅9=360∘n⋅9
Simplify 2a⋅9:18a
2a⋅9
Multiply the numbers: 2⋅9=18=18a
Simplify −9180∘+9a​⋅9:−(180∘+9a)
−9180∘+9a​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=−9(180∘+9a)⋅9​
Cancel the common factor: 9=−(9a+180∘)
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
18a−(180∘+9a)=3240∘n
18a−(180∘+9a)=3240∘n
18a−(180∘+9a)=3240∘n
Expand 18a−(180∘+9a):9a−180∘
18a−(180∘+9a)
−(180∘+9a):−180∘−9a
−(180∘+9a)
Distribute parentheses=−(180∘)−(9a)
Apply minus-plus rules+(−a)=−a=−180∘−9a
=18a−180∘−9a
Simplify 18a−180∘−9a:9a−180∘
18a−180∘−9a
Group like terms=18a−9a−180∘
Add similar elements: 18a−9a=9a=9a−180∘
=9a−180∘
9a−180∘=3240∘n
Move 180∘to the right side
9a−180∘=3240∘n
Add 180∘ to both sides9a−180∘+180∘=3240∘n+180∘
Simplify9a=3240∘n+180∘
9a=3240∘n+180∘
Divide both sides by 9
9a=3240∘n+180∘
Divide both sides by 999a​=93240∘n​+20∘
Simplifya=360∘n+20∘
a=360∘n+20∘
Solve 2a−9180∘+9a​=180∘+360∘n:a=200∘+360∘n
2a−9180∘+9a​=180∘+360∘n
Multiply both sides by 9
2a−9180∘+9a​=180∘+360∘n
Multiply both sides by 92a⋅9−9180∘+9a​⋅9=180∘9+360∘n⋅9
Simplify
2a⋅9−9180∘+9a​⋅9=180∘9+360∘n⋅9
Simplify 2a⋅9:18a
2a⋅9
Multiply the numbers: 2⋅9=18=18a
Simplify −9180∘+9a​⋅9:−(180∘+9a)
−9180∘+9a​⋅9
Multiply fractions: a⋅cb​=ca⋅b​=−9(180∘+9a)⋅9​
Cancel the common factor: 9=−(9a+180∘)
Simplify 180∘9:1620∘
180∘9
Apply the commutative law: 180∘9=1620∘1620∘
Simplify 360∘n⋅9:3240∘n
360∘n⋅9
Multiply the numbers: 2⋅9=18=3240∘n
18a−(180∘+9a)=1620∘+3240∘n
18a−(180∘+9a)=1620∘+3240∘n
18a−(180∘+9a)=1620∘+3240∘n
Expand 18a−(180∘+9a):9a−180∘
18a−(180∘+9a)
−(180∘+9a):−180∘−9a
−(180∘+9a)
Distribute parentheses=−(180∘)−(9a)
Apply minus-plus rules+(−a)=−a=−180∘−9a
=18a−180∘−9a
Simplify 18a−180∘−9a:9a−180∘
18a−180∘−9a
Group like terms=18a−9a−180∘
Add similar elements: 18a−9a=9a=9a−180∘
=9a−180∘
9a−180∘=1620∘+3240∘n
Move 180∘to the right side
9a−180∘=1620∘+3240∘n
Add 180∘ to both sides9a−180∘+180∘=1620∘+3240∘n+180∘
Simplify9a=1800∘+3240∘n
9a=1800∘+3240∘n
Divide both sides by 9
9a=1800∘+3240∘n
Divide both sides by 999a​=200∘+93240∘n​
Simplifya=200∘+360∘n
a=200∘+360∘n
a=360∘n+20∘,a=200∘+360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(2)sin(3x)-1=0,0,2pi4cos^2(x)=2cos(x)+1(13)/(sin(108))= 9/(sin(x))tan^2(x)+5cos(x)-8=03sin(x)=2-2sin^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2a)cot(a+20)=1 ?

    The general solution for tan(2a)cot(a+20)=1 is a=360n+20,a=200+360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024